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Co-evolution exhibited by a network system, involving the intricate interplay between the dynamics of

the network itself and the subsystems connected by it, is a key concept for understanding the self-

organized, flexible nature of real-world network systems. We propose a simple model of such coevolving

network dynamics, in which the diffusion of a resource over a weighted network and the resource-driven

evolution of the link weights occur simultaneously. We demonstrate that, under feasible conditions, the

network robustly acquires scale-free characteristics in the asymptotic state. Interestingly, in the case that

the system includes dissipation, it asymptotically realizes a dynamical phase characterized by an

organized scale-free network, in which the ranking of each node with respect to the quantity of the

resource possessed thereby changes ceaselessly. Our model offers a unified framework for understanding

some real-world diffusion-driven network systems of diverse types.

DOI: 10.1103/PhysRevLett.109.208702 PACS numbers: 89.75.Hc, 05.40.Fb, 05.65.+b, 89.75.Fb

Today, the term ‘‘network’’ is common in our everyday
lives, in which it often refers to large-scale, complexly
structured, conglomerations of interactions in real-world
systems. Typically, these networks are not static, but
change continuously in response to the activity of the
subsystems that they connect. For example, traffic net-
works among cities supporting the transportation of people
and products are frequently reformed to meet the current
needs as cities develop or decay, and conversely, this
reformation of the networks influences the growth or decay
of the cities. A similar process takes place in the case of
communication networks [1]. In social networks, human
behavior is strongly influenced by social relationships, and
at the same time, the relationships among people change
continually as a result of their behavior. This intricate
interplay between individuals and their relationships cre-
ates the complex structures of human societies [2]. The
essence of such real-world systems resides in the coevolv-
ing dynamics of the individual subsystems and the net-
works of interactions through which they are connected. To
understand the mechanisms governing such dynamical
network organization, we have to consider the interplay
between the dynamics both on and of a network.

In the last decade, there have been two major trends in
the investigation of the type of coevolving dynamics de-
scribed above. One trend is to focus on the topology of the
network. It is well known that real-world networks possess
some common topological features [3–5]. One such feature
is a scale-free structure, in which the ‘‘node degree’’ (the
total number of links connected to a node) exhibits a
power-law distribution [4,6]. In the attempt to explain
these features, many models describing the evolution of
the topology have been proposed. The other trend is to

focus on the collective behavior of the dynamical subsys-
tems interacting on complex but static networks [7]. The
aim of such studies is to investigate how various observed
topological features of the network influence the nature of
the dynamical systems coupled through the links of the
network.
Most studies employing the approaches described

above focus on only one of the two aspects of coevolving
dynamics, evolution of the network topology or evolution
of the dynamical states of the nodes on a static network.
However, coevolving dynamics, in which the network
topology and the nodal states evolve simultaneously and
interdependently, is an interdisciplinary subject of growing
interest [8]. To facilitate further systematic studies of such
systems, a general mathematical framework for modeling
coevolving real-world networks is needed. As a first step
toward this goal, in this Letter, we propose a simple model
of coevolving weighted networks. This model is schemati-
cally depicted in Fig. 1(a). The basic concept of our model
is as follows. We assign a dynamical variable, xi, to each
node. The dynamics of these variables are governed by a
reaction-diffusion equation in which nodes are coupled
through the weighted links of the network. This dynamical
variable at each node can be regarded as the quantity of the
‘‘resource’’ at that node. Additionally, we assume a physi-
cally reasonable resource-dependent dynamics for the link
weights. We systematically investigate the collective be-
havior that emerges asymptotically through the interplay
between these dynamics both on and of the network.
We now describe the model. First, let us consider a

weighted network with N nodes. The link structure of the
network is defined by the adjacency matrix aij, in which

aij ¼ 1 if a link exists between the nodes i and j andaij ¼ 0
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otherwise. We assign a time-dependent symmetric weight
wijðtÞ ð ¼ wjiðtÞÞ to each existing link. This weight repre-

sents the strength of the interaction. Herewe study a system
in which it is these strengths of the interactions that change
in time.More precisely, we consider a system inwhich there
exists a fixed set of connections among nodes, with each
connection characterized by a weight, wijðtÞ.

We consider the reaction-diffusion dynamics of a single
quantity on this network. We refer to this quantity as the
‘‘resource’’, which may be, for example, molecules, cells,
people or money. The value of this quantity at the ith node
at time t is represented by xiðtÞ. In general, the evolution of
xiðtÞ is assumed to be described by an equation of the
following form

�xiðtÞ ¼ FðxiðtÞÞþ diffusion process via weighted links;

where �xiðtÞ � xiðtþ 1Þ � xiðtÞ. Here, FðxÞ represents a
reaction process undergone by the resource. The weights
wijðtÞ control the diffusion process as follows. This process
can be understood as consisting of the combined motion of
many random walkers, in which the walkers at the node i
move to the node j in a single time step with the time-
dependent probability DwjiðtÞ=siðtÞ. Here, siðtÞ is the

strength of the node i, defined by siðtÞ �
P

j2N i
wjiðtÞ ¼P

jaijwijðtÞ, whereN i is the set of nodes connected to the

node i. Themaster equation for the resource is thus given by

�xiðtÞ ¼ FðxiðtÞÞ þD
X

j2N i

�
wijðtÞ
sjðtÞ xjðtÞ �

wjiðtÞ
siðtÞ xiðtÞ

�

;

(1)

where the second and third terms are the inward and out-
ward currents of the resource at the ith node, respectively.
For the reaction process, we employ simple dissipationwith
equilibrium state x ¼ 1, described by

FðxÞ ¼ ��ðx� 1Þ:
Next, we describe the evolution of the structure of the

network. It is reasonable to assume that the evolution of a
weight wijðtÞ depends on the quantities of the resource at

the corresponding nodes, xiðtÞ and xjðtÞ. As a first step, we
assume a linear dependence on each, with the weight wijðtÞ
merely relaxing to xiðtÞxjðtÞ, appealing to the law of mass

action. Then, employing the simplest form, we stipulate the
dynamics of the weights to be described by

wijðtþ 1Þ � wijðtÞ ¼ �½xiðtÞxjðtÞ � wijðtÞ�; (2)

where the parameter ��1 represents the relaxation time
scale of the weight dynamics. It should be noted that in
these dynamics it is possible for a link to be effectively
eliminated, because weights can become vanishingly
small.
The coevolving dynamics of the entire system are de-

scribed by the simple equations (1) and (2). Despite their
simplicity, however, we have found that the interplay be-
tween the two types of dynamics that they describe can
yield power-law distributions of the resource and the
weights, even when the underlying topology of the network
is not scale-free. Figures 1(b)–1(d) display a typical result
of the numerical simulations, where an Erdös-Rényi (ER)
random graph was used for aij. As displayed in Fig. 1(b),

the cumulative distribution of the resource takes a power-
law form with exponent ���1 in the asymptotic state.
This result is consistent with an empirical law found to
characterize many physical and social phenomena, includ-
ing word frequencies in natural languages, populations of
cities, statistics of Web access, and company sizes [9],
namely, Zipf’s law [10]. As seen in Figs. 1(c) and 1(d),
the weights wij and strengths si also exhibit power-law

distributions in the asymptotic state with different expo-
nents. For details of the network dynamics, see Fig. S1 and
the movie included in the Supplemental Material [11].
In the following, we focus on the extreme case � ¼ 0,

which can be readily treated analytically. In this case, the
resource merely diffuses over the network without dissi-
pation, and the total quantity of the resource is conserved.
Furthermore, to obtain insight into the interplay between
the diffusive resource and the weight dynamics, here we
investigate the situation in which the resource dependence
of the weight dynamics takes the generalized form
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FIG. 1 (color online). (a) A schematic illustration of coevolv-
ing dynamics of a network and the distribution of a diffusive
resource on it. (b), (c), (d) Typical features of the network that
emerge through the coevolving dynamics. The cumulative dis-
tributions of the quantity of the resource, xi, the weights, wij, and

the strengths, si, converge to power-law forms. The topology of
the network, represented by the adjacency matrix aij, is chosen

as an Erdös-Rényi random graph with N ¼ 16384 and hki ¼ 10.
The initial distribution of the resource and the initial weights
were generated according to a normal distribution with mean
� ¼ 1 and standard deviation � ¼ 0:1. Other parameter values
are as follows: � ¼ 0:05, D ¼ 0:34, � ¼ 0:01.
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wijðtþ 1Þ � wijðtÞ ¼ �½xiðtÞ�xjðtÞ� � wijðtÞ�: (3)

We determine the types of organized network structure
realized as a function of the parameter �, which controls
the non-linearity of the resource dependence. Figure 2
summarizes the numerical results. As seen there, two dis-
tinct types of network structure appear through the dynam-
ics, as determined by the value of �. In the case � � 1,
there emerges a power-law resource distribution in which a
few very resource-rich nodes (hubs) and many resource-
poor nodes coexist. Contrastingly, in the case �< 1, the
resource is distributed almost evenly among all nodes, and
no prominent hubs appear.

We now analyze the asymptotic behavior of the system,
making some simplifying approximations that allow us to
extract meaningful results. Let us first consider separately
the dynamics of the resource distribution and set of link
weights in the artificial cases that the other is held fixed.
First, if the link weights were static, the quantities xi would
converge to the equilibrium solution x�i ¼ si=ð

P
ksk=NÞ.

Second, if the resource distribution were held fixed, the
weights would relax to the solution w�

ij ¼ ðxixjÞ�. With

these considerations, we conjecture that the asymptotic
dynamics can be approximated by updating the variables
xi and wij in an alternating manner using two maps,

xiðnþ 1Þ ¼ siðnÞ=ðPkskðnÞ=NÞ and then wijðnþ 2Þ ¼
ðxiðnþ 1Þxjðnþ 1ÞÞ�, where n denotes the number of

the iteration. Although this approximation might be too
crude, the results it produces exhibit reasonable agreement
with the numerical simulations of the original system, as
shown below. Next, using the first of the above maps, we

can eliminate xiðnÞ in the second. Then, using the update
rule for the strength si, we obtain

siðnþ 1Þ ¼ cnsiðnÞ�
XN

j¼1

aijsjðnÞ�; (4)

where cn ¼ 1=ðPkskðnÞ=NÞ2�. In addition, we consider the
case in which the network topology aij is chosen as a

regular random graph, which means that each aij is se-

lected randomly, but
P

jaij is a predetermined constant, k0.

Then, using a mean-field approximation, we finally obtain
the following relation for the strength after n iterations
with the initial value sið0Þ:

siðnÞ / sið0Þ�n
: (5)

The asymptotic behavior resulting from the above maps
can be classified into three cases, corresponding to three
types for the value of �: �> 1, �< 1 and � ¼ 1. We now
consider these individually.
In the case �> 1, for a given initial strength distribution

P0ðsÞ, we have PnðsÞ / P0ðs��nÞs�1þ��n
. In the asymptotic

limit n ! 1, the distribution PnðsÞ behaves as PnðsÞ !
s�1. In Fig. 2(b), it is seen that this power-law strength
distribution appears not only in the case of a regular
random graph but also in the case of an ER random graph.
This suggests that the above analytic result holds for a
more general network topology. As shown in the top graph
of Fig. 2(b), an increase in the link weight between two
nodes tends to become larger when the quantities of the
resource at these nodes increase. This leads to the emer-
gence of hub nodes. This scaling-up effect represents a
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FIG. 2 (color online). In the extreme case � ¼ 0, in which the resource diffuses over the network without dissipation, we find two
regimes, corresponding to different types of dependence of wijðtÞ on xiðtÞ and xjðtÞ, characterized by the value of a parameter � [see

Eq. (3)]. In these two regimes, qualitatively different network structures are realized in the asymptotic state. (a) The coevolving
network dynamics yields a scale-free structure with a power-law resource distribution for � ¼ 1:25 and a non-scale-free structure for
� ¼ 0:5. The underlying topology, aij, is given by a regular random graph (N ¼ 512, k ¼ 5). (b) The dependence of the asymptotic

strength distribution on the imposed topology of the network and the type of the weight dynamics. The top three graphs correspond to
three types of weight dependence of �wij on xi and xj: �wij � ðxixjÞ� with � ¼ 0:75, 1 and 1.25. The other parameter values are as

follows: N ¼ 16384, hki ¼ 10, D ¼ 0:02, � ¼ 0:01.
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kind of ‘‘rich get richer’’ or ‘‘economies of scale’’
behavior.

In the opposite case, �< 1, siðnÞ in Eq. (5) converges to
a uniform constant in the limit n ! 1; i.e., Eq. (5) be-
comes siðnÞ / sð0Þ0. The validity of this theoretical pre-
diction has been confirmed numerically for regular random
graphs, as shown in Fig. 2(b). For ER random graphs,
owing to the variability of the degree, the strengths do
not converge to identical values but, rather, to some distri-
bution with finite variance. Note that the strength distribu-
tions for both types of random graphs in the case �< 1
possess a characteristic scale, which implies a finite mean
strength.

In the critical case, � ¼ 1, the situation is very delicate.
Theoretically, according to Eq (5), the strength after n
iterations should be given by sðnÞ ¼ sð0Þ, and thus the
strength distribution should not change. However, this
prediction is inconsistent with the numerical results, as
we have already seen that a power-law strength distribution
is realized for both regular random graphs and ER random
graphs (see Fig. 2). For complete graphs, however, the
situation is different. In this case, the strength distribution
remains unchanged, as predicted by the analytic treatment
(data not shown). These results lead us to conclude that a
more accurate approximation of the asymptotic dynamics
is required [12]

In the case with no dissipation (� ¼ 0), the exponent of
the power-law distribution is always �1, provided that
� � 1. This type of strength distribution has been reported
for the global cargo shipping network [13]. In the general
case with dissipation (� � 0), the exponent of the resource
power-law distribution generally depends on the parameter
values, such as the decay constant, �, and the diffusion
constant, D. Figure 3(a) plots the exponent of the cumula-
tive distribution of the resource in (�,D) space. These
results were obtained by fitting the numerically generated
distributions to the form x� with a least-squares fit. As seen
there, the exponent decreases to about �1:5 with increas-
ing � and decreasing D, and eventually the resource dis-
tribution ceases to be of a power-law type. We thus see that
the resource disparity among the nodes is an increasing
function of D and a decreasing function of �.

Interestingly, even in the case that the system has real-
ized its asymptotic, stationary power-law distribution, the
resource ranking among the nodes continues to change
through the coevolving dynamics. In Fig. 3(b), it is seen
how the quantities of the resource possessed by the top 20
nodes (according to the ranking at t ¼ 36000) gradually
change in time from t ¼ 36000 to t ¼ 40000, with the
rankings occasionally being exchanged. The link weights
similarly continue to evolve over the entire network, even
in the asymptotic regime. This kind of dynamical phase
of an organized scale-free network is observed generally
in the case � � 0. Note that this dynamical system de-
scribed by Eqs. (1) and (2) includes no random noise.

Contrastingly, in the case � ¼ 0, the resource ranking of
the nodes becomes fixed asymptotically [see Fig. 3(c)].
Therefore, in addition to elucidating the statistical charac-
teristics of the network emerging asymptotically, our
model is able to describe the microscopic dynamics exhib-
ited by a dynamical state in which both the link weights
and the resource distribution continue to change indefi-
nitely (see Fig. S2 in the Supplemental Material [11]). This
suggests that our model may be applicable to the inves-
tigation of the vicissitudes of social phenomena, including
the dynamics of business activity, web page access rank-
ings and city populations [14].
In conclusion, we have proposed a simple model of a

coevolving weighted network exhibiting a dissipative dif-
fusion process of a resource over a weighted network and
resource-dependent evolution of the network link weights.
We have demonstrated numerically and analytically that
both the resource and weight distributions exhibit power-
law forms in the asymptotic state as a result of the interplay
between these two types of dynamics. We believe that the
most important finding of this paper is the existence of a
dynamical phase of the organized scale-free network for a
system with dissipation. From this, we conclude that our
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FIG. 3 (color). (a) Dependence of the exponent of the cumu-
lative distribution of the resource on the decay constant, �, and
the diffusion constant, D. The other parameter values are the
same as in Fig. 1. The points labeled ‘‘(b)’’ and ‘‘(c)’’ indicate
the parameter values used in the corresponding cases. (b) Time
evolution of the quantities of the resource at the 20 most
resource-rich nodes in the asymptotic state for a system with
dissipation (� ¼ 0:05). In this case with nonzero �, the distri-
bution of the resource over the network realizes a steady state
asymptotically, but, as seen here, the quantity of the resource at
each node and the rankings of the nodes continue to change
indefinitely. (c) Same as in (b), but with no dissipation (� ¼ 0).
In this case, the quantities of the resource at the top 20 nodes
remain fixed.
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model can treat the dynamical formation of microscopic
structure in a weighted network. We believe that our model
provides a useful basic framework for the modeling of
coevolving weighted networks and that through the appli-
cation of various generalizations, it should be useful for
investigating real-world systems of many kinds. For ex-
ample, generalizing the model to include reaction dynam-
ics with multiple resources, it would be readily applicable
to a wide range of actual physical and social systems,
including systems driven by chemical reaction-diffusion
dynamics, predator-prey dynamics and population
dynamics.

We thank N. Masuda for fruitful discussions. This work
was supported by KAKENHI (24120708, 24740266,
21120002, 23115511).

*takaaki.aoki.work@gmail.com
[1] V. Kalapala, V. Sanwalani, A. Clauset, and C. Moore,

Phys. Rev. E 73, 026130 (2006); A. Barrat, M.
Barthelemy, R. Pastor-Satorras, and A. Vespignani, Proc.
Natl. Acad. Sci. U.S.A. 101, 3747 (2004).

[2] G. Palla, A.-L. Barabási, and T. Vicsek, Nature (London)
446, 664 (2007); G. Kossinets and D. J. Watts, Science
311, 88 (2006).

[3] D. J. Watts and S.H. Strogatz, Nature (London) 393, 440
(1998).

[4] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[5] M. E. J. Newman, SIAM Rev. 45, 167 (2003).
[6] D. J. Price, Science 149, 510 (1965).

[7] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U.
Hwang, Phys. Rep. 424, 175 (2006).

[8] T. Gross and B. Blasius, J. R. Soc. Interface 5, 259 (2008);
G. A. Bohme and T. Gross, Phys. Rev. E 83, 035101
(2011); F. Vazquez, V.M. Eguiluz, and M. S. Miguel,
Phys. Rev. Lett. 100, 108702 (2008); C. Nardini, B.
Kozma, and A. Barrat, Phys. Rev. Lett. 100, 158701
(2008); P. Holme and M. E. J. Newman, Phys. Rev. E 74,
056108 (2006); T. Aoki and T. Aoyagi, Phys. Rev. Lett.
102, 034101 (2009); M. Perc and A. Szolnoki, BioSystems
99, 109 (2010); Q. Xuan, F. Du, H. Dong, L. Yu, and G.
Chen, Phys. Rev. E 84, 036101 (2011).

[9] G. Miller and E. Newman, Am. J. Psychol. 71, 209 (1958);
X. Gabaix, Q. J. Econ 114, 739 (1999); B.A. Huberman,
P. L. T. Pirolli, J. E. Pitkow, and R.M. Lukose, Science
280, 95 (1998); H. Aoyama, W. Souma, Y. Nagahara, M. P.
Okazaki, H. Takayasu, and M. Takayasu, Fractals 8, 293
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