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Input-output relationship in social communications characterized by spike train analysis
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We study the dynamical properties of human communication through different channels, i.e., short messages,
phone calls, and emails, adopting techniques from neuronal spike train analysis in order to characterize the
temporal fluctuations of successive interevent times. We first measure the so-called local variation (LV) of
incoming and outgoing event sequences of users and find that these in- and out-LV values are positively correlated
for short messages and uncorrelated for phone calls and emails. Second, we analyze the response-time distribution
after receiving a message to focus on the input-output relationship in each of these channels. We find that the
time scales and amplitudes of response differ between the three channels. To understand the effects of the
response-time distribution on the correlations between the LV values, we develop a point process model whose
activity rate is modulated by incoming and outgoing events. Numerical simulations of the model indicate that a
quick response to incoming events and a refractory effect after outgoing events are key factors to reproduce the
positive LV correlations.
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I. INTRODUCTION

The study of social systems from a network perspective
has a long tradition in the social sciences, i.e., social network
analysis [1], and has played a central role in the recent advent
of computational social science [2]. Focusing on the structure
of social relationships has revealed generic properties of social
networks, including their strongly heterogeneous connectivity
and modular structures [3,4]. Structural properties of social
networks also exhibit considerable effects on different types
of dynamical processes on the networks, such as epidemic and
information spreading [5,6].

As accessible data sets of human behavior become increas-
ingly rich, various approaches have been employed to improve
the network modeling in order to uncover hidden aspects of hu-
man dynamics. In particular, records of communication events
between individuals with high temporal resolutions have led
to the study of dynamical properties of networks, rather than
static ones, in the emerging field of temporal networks (see
Refs. [7–9] for comprehensive reviews). In social temporal
network studies, researchers have focused on the properties of
the time series of interaction events associated to an individual
(e.g., Refs. [10–12]). Such timelines of instantaneous events
can be found in technology-mediated human communication,
such as emails, short messaging service (SMS), or other
message delivery services like Twitter, Facebook, Google plus,
and others. Assuming that interaction events have a very short
duration, as is often the case, this type of representation is also
popular for mobile phone calls and physical proximity patterns
measured by Bluetooth [13] or RFID [14].
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Previous studies have shown in a variety of domains that
burstiness is a universal feature of time series of human
interactions [15–17]. The notion of burstiness refers to the
bursting behavior of individuals, as they exhibit a high activity
within short periods and occasionally exhibit long periods of
silence. Burstiness is often characterized by the fat tail of the
distribution of the interevent times (IET) between successive
events, sometimes fitted by power-law functions [16], and
significantly deviating from the exponential distributions
expected in the case of classical Poisson processes. These
observations motivated the design of more elaborated models
for human activity [16,18].

Although the presence of heavy-tailed IET distributions
is a clear evidence of burstiness, the temporal dynamics of
human communication is only partially described by a given
IET distribution. For example, as illustrated in Fig. 1, a
single set of heavy-tailed IETs yields event sequences with
drastically different temporal fluctuations. The sequence at
the top panel looks like a regular IETs with slow frequency
modulation. In contrast, in the bottom sequence, the short
and long IETs occur intermittently. The middle one is in
an intermediate situation. Therefore, additional measures are
required to distinguish these different behaviors. In fact,
intermittent sequences associated to higher-order correlations
between IETs have been reported in real-world examples [19–
21]. The characterization of such temporal fluctuations in
social communication is an ongoing challenge to understand
the nature of temporal dynamics of human communication.

Similar questions are central in the field of computational
neuroscience. Characterization of the signal sequence of neu-
ronal activity, called spike trains, is an important issue related
to the problem of neural coding, which aims to understand how
neurons communicate using spikes [22]. A variety of methods
have been developed for the analysis of spike trains [23–26].
In the present work, we are especially interested in a measure
originally designed to characterize temporal fluctuations in
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FIG. 1. Three sequences of events with different temporal fluctu-
ations (right) that are generated from the same set of the IETs (left).

spike train data, called local variation (LV) [25–27]. The LV
measure presents the advantage of being essentially orthogonal
to the activity rate in the sense of information geometry [28]
and has been shown to be a robust measure against the
nonstationary modulation of the activity rate which was tested
in multiple data sets in comparison with other statistical
measures [26,27]. These properties make LV a promising
candidate measure for the study of social communication data,
as they are subject to external modulation of the activity rate,
such as daily, weekly, and seasonally rhythms [18,29,30]. The
LV measure was recently used to study the effect of popularity
on temporal fluctuations of events in Twitter [31].

An important difference between the previous studies and
our work is to pay attention to the relationship between incom-
ing and outgoing events involving social agents and its impacts
on temporal fluctuations. Similarly to neurons, receiving inputs
and integrating them to send outputs, social agents are subject
to incoming messages that may, or not, trigger reactions. To
test this idea, we analyze the response-time distribution in
empirical data sets and develop a generalized Hawkes process
to model the observed dynamical properties. The majority
of previous studies on higher-order correlations between
IETs [19–21] primarily focused on the event timings and
dismissed the directions of messages. However, investigation
of the input-output relationship in human messaging processes
may provide us important insight on how information flows in
human communications.

Toward this goal, in Sec. II, we introduce the LV measure
and show that it provides a characterization of temporal fluctu-
ation of each individual. In Sec. III, using the LV measure, we
characterize the relationship between the incoming (receiving)
and outgoing (sending) event sequences and develop a point
process model to identify the mechanism behind the observed
correlations. Finally, in Sec. IV, we summarize and discuss
our findings.

II. CHARACTERIZING TEMPORAL FLUCTUATIONS BY
STATISTICAL MEASURES FOR EVENT SEQUENCES

A. Data sets

We analyze the social communication data sets of SMS,
phone calls, and emails. In the following, we refer to the three
data sets as SMS, Phone, and Email. The SMS and Phone
data sets are a collection of timestamps of communication

events made among a subset of anonymized users offered by
a European cellphone service provider [32]. The SMS data
set contains 28 757 905 events among 983 424 unique users
during 1 month and the Phone data set contains 14 303 384
events among 1 131 049 unique users during the same period.
Although each event in the Phone data set has a duration,
we discard it and focus on the starting time in the following
analysis. It should be noted that missed phone calls (with
null duration) have been filtered out from the data set. The
Email data set is the Enron email network [33,34] that contains
1 148 072 emails sent between employees of Enron from 1999
to 2003. This data set was made public during the legal
investigation concerning the Enron corporation. A user can
send an email to oneself and we keep such self-events for
analysis. The time resolution of all the data sets is equal to 1 s.

B. Statistical measure for event sequences

Let us consider a sequence of IETs denoted by
{T1,T2, . . . ,Tn} between n + 1 events, where Ti is the length
of the ith interval. Different statistical indicators can be used
in order to characterize this time series. A popular choice is
the coefficient of variation (CV), defined as

CV ≡
√

1
n−1

∑n
i=1(Ti − T̄ )2

T̄
, (1)

where T̄ ≡ ∑
i Ti/n is the average IET. A large value of CV

indicates the heterogeneity in the IETs. The CV is equivalent
to the burstiness measure proposed in Ref. [19] up to algebraic
variable transformation.

The LV is instead defined by [25]:

LV ≡ 1

(n − 1)

n−1∑
i=1

3(Ti − Ti+1)2

(Ti + Ti+1)2
, (2)

and mainly differs from CV by its comparison between
successive values of IETs. The factor three of the numerator
in the right-hand side of Eq. (2) is as to set the LV value for
a Poisson process equal to unity. Theoretically, the LV value
ranges from zero (i.e., regular) to 3 (i.e., intermittent).

Let us summarize some known properties of LV and its
comparison with CV. The expected value of LV, denoted by
E(LV), is equal to unity for a Poisson process with a constant
activity rate [25], and E(CV) is also equal to unity in this
case. By the definition of LV in Eq. (2), if the fluctuations
among successive IETs are smaller than those expected for a
Poisson process, the LV value is smaller than unity. In other
words, the event sequence with LV < 1 is more regular than
a Poisson process. By contrast, if the fluctuations are larger
than those of a Poisson process and the event sequence is
intermittent, the LV value is larger than unity. When the event
sequence is intermittent with a large LV value, we typically
observe a negative correlation between two successive IETs;
a short IET is likely to follow a long IET and vice versa. In
neuroscience literature [25–27], the intermittent sequence is
referred as bursty, because such an intermittent spike train
is often recorded from bursting neurons, which is one of
electrophysiological neuronal types [35]. It should be noted
that burstiness is defined in a way that differs from the
definition in the literature of network science [16].
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FIG. 2. (a) Distribution of the IETs of outgoing events of the SMS data set. Scatter plots of the LV and CV values for (b) outgoing events
and (c) incoming events. The histograms of the measures are also shown. The same set of the plots for (d)–(f) the Phone data set and for (g)–(i)
the Email data set.

The LV measure takes finite values even when the CV value
diverges. For example, let us suppose that the tail of the IET
distribution exhibits a power-law function τ−α . If α � 2 holds,
then the CV value diverges to +∞ in the limit of a large number
of events (and very large values in finite samples as shown in
Fig. 2). Even in such a case, the LV value remains finite and
can capture the correlations between successive IETs.

C. LV and CV values of empirical data sets

We calculate the LV and CV values of users in the SMS,
Phone, and Email data sets. The events in all of the three data
sets have their directionality. In other words, each user has
two sequences of events: the incoming (i.e., receiving) events
and the outgoing (i.e., sending) events of messages. In this
section, we separately evaluate these statistical measures for
the incoming and outgoing events (i.e., CVin, CVout, LVin,
and LVout) for each user. In the following analysis, we restrict

ourselves to consider the users having no fewer than 100 IETs
for both incoming and outgoing events to obtain stable results.
This restriction leaves the number of users to be analyzed equal
to 50403 (5.1% of the users in the original data set) for the
SMS data set, 4614 (0.41%) for Phone, and 290 (0.33%) for
Email. We adopted the threshold value (i.e., 100 IETs) that
was used in the previous studies [25,26]. In addition, as shown
in Appendix A, we numerically confirmed that the standard
deviation of LV over synthetic event sequences with 100 IETs
is sufficiently small.

We plot the IET distribution of outgoing events for all
the nodes in the SMS data set [Fig. 2(a)]. In accordance
with the results reported in the previous studies on various
communication data [16,17], the IET distribution of outgoing
events indicates a heavy-tailed behavior that roughly follows
a power-law function. This heterogeneity in the outgoing
IETs is also confirmed at the individual level; the 99.83%
of users have the CVout values larger than unity [Fig. 2(b)].
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TABLE I. Results of F -test statistics for the LV and CV values
in the three data sets.

Data set type 0.1 percentile F value (LV) F value (CV)

SMS Incoming 1.146 28.982 8.236
Outgoing 1.137 32.740 9.011

Phone Incoming 1.227 4.203 12.398
Outgoing 1.151 6.286 11.122

Email Incoming 1.178 3.377 1.160
Outgoing 1.568 5.867 1.328

By contrast, the LVout values of users has a bell-shaped
distribution, approximated by a normal distribution with the
mean 1.56 and standard deviation 0.28. The range of the LVout

values indicates the variety in message sending behavior; some
individuals send messages in a regular manner and others send
in a random or even intermittent manner. In fact, the 97.1%
of users have the LVout values larger than unity, which implies
that for those individuals, the IET fluctuations are larger than
those of a Poisson process. For the rest of users (2.9% of
all), their temporal behaviors are more regular than a Poisson
process. However, the 98.9% of users with LVout < 1 still have
the CVout values larger than unity, indicating the heterogeneity
of the set of IETs from these users [Fig. 2(b)]. As we can see
in Figs. 2(b) and 2(c), there are no clear correlations between
the CV and LV values of users for either incoming or outgoing
events. Therefore, the LV measure may capture characteristics
of event sequences that cannot be explained by CV. The same
plots for the other two data sets are shown in Figs. 2(d)–2(i).
We can see similar behavior of LV and CV as in the SMS data
set. The CV values in the Email data set can be very large,
possibly because of the long term of the observation (i.e., 4
years) and presence of very long IETs.

In closing this section, we confirm the consistency of the
LV and CV values of a user over time. Because we want to use
the LV and CV values as the steady characteristics of users, the
variance of these values of a user across different periods must
be smaller than the variance over the population. We verify
the consistency by using a statistical F test [36], in which we
compare the variances of the LV (CV) values across all nodes
with the average of the variances of the LV (CV) values of
each node across 20 subdivided sequences (see Appendix B
for details). As the results of the statistical tests summarized
in Table I, the F values of the LV and CV values for both
incoming and outgoing events are significantly above the 0.1
percentile points for all of the three data sets, except for the
CV values in the Email data set. These results indicate that the
variance of the LV value of each user over time is significantly
smaller than the variance over the population, and the usage
of these measures as the users’ characteristics is justified.

III. RELATIONSHIP BETWEEN INCOMING AND
OUTGOING EVENT SEQUENCES

We first investigate the correlations between the statistics of
incoming and outgoing events of users and study how individ-
uals send messages in response to receiving messages. Then

we propose a simple model for interpreting the observations
in the data sets.

A. Correlations between LV values of incoming
and outgoing events

Figure 3 shows the distributions of the LV values and the
correlations of the LV (CV) values between incoming and
outgoing events for the three data sets. For the SMS data set,
the LVin and LVout values are almost identically distributed
[Fig. 3(a)]. This identity of the two distributions is not trivial
because these events are driven by different mechanisms as
follows. On the one hand, receiving messages is a passive
process for a user, because senders (i.e., other users) determine
the timings. If the actions of the senders are independent of
each other as well as of the focal user’s action, the correlations
between the successive events disappear and the resultant
event sequence of receiving messages can be modeled by a
Poisson process with a time-dependent activity rate [37]. On
the other hand, sending messages is an active process for a
user, because the user determines the timing and it can differ
from a Poisson process. Therefore, this identity of the LVin

and LVout distributions shown in Fig. 3(a) suggests that the
event sequences of receiving messages from different senders
are not independent of each other and may be correlated with
the action of the receiver.

To examine the relationship of incoming and outgoing
events at the individual level, we depict the scatter plots of
the LVin and LVout values and the CVin and CVout values
[Figs. 3(b) and 3(c)]. The LVin and LVout values of a user
exhibit a positive correlation, whereas the CVin and CVout

values are less correlated. The 95% confidence interval of the
correlation between LVin and LVout is equal to [0.726,0.734]
for SMS [Fig. 3(b)], while it is [0.271,0.323], [0.23,0.437] for
Phone [Fig. 3(e)] and Email [Fig. 3(h)] data sets, respectively.
Thus, the correlation observed for SMS data set significantly
deviates from those for the other two data sets. It should be
noted that these correlation coefficients are robust against the
change in the threshold value of the number of IETs that we
use to filter the users (see Appendix A).

Although the values of the Pearson correlation coefficients
for the LV (0.73) and CV (0.68) plots are close, its 95%
confidence interval for the LV, [0.726,0.734], deviates from
that for the CV, [0.679,0.689]. The correlation between LVin

and LVout values implies a possible interaction between the
incoming and outgoing events, that is, a reaction behavior of
users when replying to received messages.

The Phone and Email data sets exhibit the LVin and LVout

statistics differently from those of the SMS data set, while the
results of the two data sets are similar [Figs. 3(d)–3(i)]. For
the two data sets, the distributions of the LVin and LVout values
[Figs. 3(d) and 3(g)] are less similar than those for the SMS
data set [Figs. 3(a)]. In addition, the correlations between the
LVin and LVout values [Figs. 3(e) and 3(h)] are much weaker
than that for the SMS data set [Figs. 3(b)]. For the Phone
data set, the correlation for LV is also much weaker than that
for CV.

These differences in the LV statistics between the three
data sets may be due to the different communication methods
for these communication tools. For example, users of SMS
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FIG. 3. (a) Histogram of LVs, and the correlations between (b) LVin and LVout and (c) CVin and CVout for the SMS data set. The same set
of the plots for [(d), (e), and (f)] the Phone data set and [(g), (h), and (i)] the Email data set.

may quickly respond to a received message. For phone-call
communication, such a quick response (i.e., back call) may
not be necessary because one can have conversations within a
single call. In a similar way, for email communication, many
messages are left in the mailbox and later the replies to them
are sent. To examine the response behavior between the data
sets, we will employ the response-time distribution analysis in
the next section.

B. Response behavior to incoming messages

To clarify the differences between the three data sets in
terms of the response patterns, the response-time distributions
are computed for the SMS, the Phone, and the Email data
sets. The procedure for calculating a response-time distribution
is schematically shown in Fig. 4. We define the response
time to an incoming event as the time interval until the first
outgoing event of the user (top of Fig. 4). We count the
response time if and only if there is no other incoming event
between the focal pair of the incoming and outgoing events to
avoid the duplication of the response time. The response-time

distribution is then computed by constructing a histogram of
the response times for all the users (bottom of Fig. 4). The bin
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τ2 τ3

Time
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F
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{τ1, τ2, τ3, τ4, ....}

FIG. 4. Schematic of computation of the response-time
distribution.
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FIG. 5. Response-time distributions for the SMS, the Phone, and the Email data sets. (a) Normal plots. (b) Comparisons with the response-
time distribution obtained from the randomized data sets. (c) The net response functions to an incoming event after subtracting the null-model
baseline. (d) Semilog plots fitted by an exponential function.

size of the histogram is set to 10, 20, and 120 s for the SMS,
the Phone, and the Email data sets, respectively. The bin size
for the Email data set is larger than those for the other data sets
to remove the peaks of activities at every minute which may
be an artifact due to the batch mail delivery system. As shown
in Fig. 5(a), the response-time distributions of all the data sets
have a sharp peak just after an incoming event and decrease
with time. The distribution for all the data sets have sharp
peaks at τ ∼ 1 min. It should be noted that a similar peak is
also reported in Ref. [38] although a different definition of the
response time is adopted. Only the Email data set has another
smaller peak at τ ∼ 1 h.

Although the response-time distribution [Fig. 5(a)] provides
full information of the response behavior in the data sets, we
want to know which part of the response-time distribution
cannot be explained by a baseline activity patterns, or a
null model, of individuals. To generate such a null-model
event sequences, we shuffle the time stamps of all the events
in a data set (this shuffling is called randomly permuted
times [7,39]). This randomization destroys any temporal

correlations between the event times, while retaining the total
number of incoming and outgoing events of each user and the
total number of events for each user pair. The randomization
also conserves the total number of events occurring at each
time and, consequently, daily and weekly activity patterns.

We calculate the response-time distribution for the ran-
domized data set and compare them with the original ones
[Fig. 5(b)]. The response-time distributions for the randomized
data sets do not have the apparent peaks, in contrast to
the original response-time distributions, while they exhibit
decay for large τ similar to the original distributions. If we
vertically rescaled the null-model response-time distributions,
they mostly overlap with the original distributions for large
τ . This result implies that the decay of the distribution is
not related to the response behavior of users, because the
randomization destroys any temporal correlations between the
incoming and outgoing events.

Subtracting the rescaled null-model curves from the origi-
nal response-time distributions reveals the response behavior
of users that deviate from the null model [Fig. 5(c)]. We refer to
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the resultant curves as the net response function to an incoming
event. The effects of an incoming event are evaluated by the
largest peak of the response function and the area under it. The
peak and area are equal to 0.23 and 0.41 for the SMS data set,
0.0067 and 0.084 for the Phone data set, and 0.0017 and 0.024
for the Email data set. These results suggest that the effects of
an incoming event are much stronger in the SMS data set than
those in the other two data sets. We also quantify the decay
of the net response function by the time required for the net
response function to decay to the 1/100 value of the peak after
the peak time, denoted by T1/100. We decide to measure the
decay in this way because the net response functions cannot be
well fitted by an exponential function [Fig. 5(d)]. The T1/100

values are equal to 11.3, 109, and 90 min for the SMS, the
Phone, and the Email data sets, respectively. These results
indicate that the response of users in the SMS data set is much
faster than those in the Phone and the Email data sets.

C. A generalized Hawkes model incorporating
response behavior

Combining the results described in the previous sections,
we are interested in the relationship between the correlations
between the LVin and LVout values (Fig. 3) and the response
behavior of users (Fig. 5). The hypothesis is that the fast and
intense response such as observed in the SMS data set induces
chain reactions of messaging events between individuals in a
short period and thus a positive correlation between LVin and
LVout emerges. By contrast, the slow and moderate response
observed in the Phone and the Email data sets do not cause
a strong correlation between the LV values. To validate this
hypothesis, we introduce a point process model of communi-
cation activities and examine the dependence of the correlation
between the LVin and LVout values on the response behavior.

Our model is based on the Hawkes process [40], which was
first proposed to model seismic patterns [41] and was recently
applied to human communication behavior [30,42–44]. In the
Hawkes model, the activity rate of an individual, denoted by
λ(t), is determined by

λ(t) = u0 + aself

∑
k:tout

k <t

1

τself
exp

[
−

(
t − tout

k

τself

)]
, (3)

where u0 is the baseline activity rate, tout
k is time of the kth

outgoing event, and aself and τself are the amplitude and the
time constant of self-modulation (i.e., effects of outgoing
events). We incorporate the effect of response behavior to
incoming events from others (i.e., receiving messages) by
adding the corresponding term to Eq. (3) as

λ(t) = u0 + aself

∑
k:tout

k <t

1

τself
exp

[
−

(
t − tout

k

τself

)]

+ aex

∑
k:t in

k <t

1

τex
exp

[
−

(
t − t in

k

τex

)]
, (4)

where t in
k is the time of the kth incoming event and aex and

τex are the amplitude and the time constant of the response
behavior.

The incoming event sequence represents an exogenous
effect of the model and we have to set its generation process for

numerical simulations. As shown in Figs. 2(c), 2(f), and 2(i),
the LVin values follow a bell-shaped distribution. To mimic
this situation, we first randomly draw a LVin value from
the normal distribution with mean μ = 1 and the standard
deviation σ = 0.25.

Then, we generate an event sequence with the given LVin

value by using a gamma process. A gamma process is a renewal
process whose IETs, denoted by T , obey a gamma distribution:

p(T ; κ,θ ) = T κ−1 e−T/θ

θκ�(κ)
, (5)

where κ and θ are parameters and �(x) is the gamma function.
The mean and variance of IETs and the LV value of the gamma
process are given by [25]

E[T ] = κθ, Var[T ] = κθ2, LV = 3

2κ + 1
. (6)

Therefore, we set κ = (3/LVin − 1)/2 to achieve the given
LVin value and then θ = 1/κ to retain E[T ] = κθ = 1. For a
drawn LVin value, we run a numerical simulation of the model
of Eq. (4) until we obtain 100 IETs [45]. Then we compute the
LVout value of the generated event sequence.

We summarize the numerical results of the model into
the phase diagrams of the Pearson correlation coefficient R

between LVin and LVout in Figs. 6(a) and 6(b). We draw
randomly 100 000 LVin values and carry out the simulations
for a fixed set of parameters (u0,aself,τex,τself ). These diagrams
indicate that the positive correlation between the LVin and
LVout values, which is similar to that observed in the SMS
data set [Fig. 3(b)], emerges if aex is positively large and
aself is negatively large and τex is small. A typical scatter
plot with 1000 points in this condition is shown in Fig. 6(c).
This parameter setting can be interpreted as follows. The
combination of a large aex and a small τex implies that the
impact of an incoming event is strong and its response is
very quick, as the response behavior observed in the SMS
data set [Fig. 5(c)]. Another key factor is a negative aself ,
which represents a refractory effect that the activity rate
decreases after sending a message. This refractory effect might
be interpreted as a user who just sent a message is satisfied
and stop further sending or that some interval is required to
write the next message. In addition, τex < τself holds and the
impact of incoming events decays faster than that of outgoing
events. Without these conditions, the LVin-LVout correlation is
not observed as shown in Figs. 6(d) and 6(e). In one case,
when the model user has a weak response behavior (e.g.,
aex = 0.1) and a strong self-excitation effect (e.g., aself = 1),
there is no correlation between the LV values [Fig. 6(d)]. In
another case, when the model user has a strong response
behavior (e.g, aex = 2) and does not have self-modulation
effect (i.e., aself = 0), the correlation is also almost equal to
zero [Fig. 6(e)].

On the basis of these results, the working hypothesis should
be modified as follows. The intense and quick response to
incoming events (i.e., a large aex and a small τex) and the
refractory effect (i.e., a negative aself ) are the fundamentals of
the positive correlation between the LVin and LVout values.
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FIG. 6. [(a) and (b)] Phase diagrams of the correlation coefficient R between the LVin and LVout values obtained by the numerical simulations
of the model [Eq. (4)]. The parameters that are not indicate by the axis are set to (u0,aself,τex,τself ) = (0.2,−2,0.2,0.5). Scatter plots of the
LVin and LVout values obtained with (c) (u0,aex,aself,τex,τself ) = (0.2,1.2,−2,0.2,0.5), (d) (0.2,0.1,1,0.2,0.5), and (e) (0.2,2,0,0.2,0.5). These
parameter settings are indicated by cross points in the diagrams (a) and (b).

IV. DISCUSSION

In this paper, we have studied the temporal characteristics
of human communication behavior using by the spike train
analysis techniques. First, we have introduced the LV measure
to evaluate how the incoming and outgoing event intervals
are temporally fluctuating and found the positive correlation
between LVin and LVout for the SMS data set, while we found
little correlation for the Phone and Email data sets. Second,
we have analyzed the response time of users to quantify how
individuals send messages in response to receiving messages.
The comparison of the net response-time function for the
original and the randomized data sets have unveiled a strong
and quick response in the SMS data set, contrary to the
weak and slow response in the Phone and Email data sets.
To understand the mechanism behind these observations, we
have developed a point process model based on the Hawkes
model. From this model study, we identified that the positive
LV correlation can be reproduced by two key factors: a strong
and quick response to incoming events and a refractory period
after outgoing events.

It is worth noting the difference between the present study
and previous works. We used the LV measure to capture
the correlations between successive IETs in this study. This
is a way to quantify higher-order correlations in the event
sequences beyond the statistics of single IETs. Some previous
work also considered such higher-order correlations and
different ways of their characterizations have been discussed
[19–21]. An important difference between the present study
and others is the attention to the input-output relationship in so-
cial communications. For example, in Ref. [19], the correlation
of IETs is measured by the Pearson correlation coefficient of
two successive IETs. In Ref. [20], the correlation and memory
effect in event sequences have been discussed by counting the
number of events occurring within a time window. However,

the directions of contacts were omitted in both of the two
studies. Combination of the event counting statistics and the
input-output relationship analysis, for instance, would provide
new insight in understanding the higher-order correlations
hidden in human social communications.

In Sec. III B, we defined the response time to an incoming
event as the time interval until the first outgoing event made
by the user after the incoming event. This definition gives
the lowest estimation of the true response time. Context
analysis of message contents may give a closer estimation;
however, achieving a perfect matching between messages is
still challenging. Furthermore, the message contents of social
communications are often not accessible for privacy protec-
tion. Therefore, we decided to use the simplest estimation of
the response time based on available data. In a preliminary
analysis, we checked the receivers of the outgoing events
made by a user and found that most of receivers are the
sender of the last incoming event to the focal user. In other
words, most of the outgoing events were the return calls or
messages to the users who made the latest incoming event.
This observation supports our assumption behind the definition
of the response time, although it does not completely exclude
possible underestimates.

The timing between the arrival of a message and its
notification to the user is another channel-dependent factor
which may have effects on the response time but was not taken
into account in this study. We may frequently receive and check
the notifications of incoming SMS messages and Phone calls
on mobile phones. By contrast, we may less frequently check
incoming emails on computers than we do on mobile phones
(this may result in a small peak in the response function at
around one hour for Email data set, as shown in Fig. 5). This
direction of analysis requires the observation of the time when
users recognize incoming messages, which is not included in
the three data sets we considered. Other data sets with such
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observation, if any, would lead to further understanding of the
social response behavior in future work.

The present study leaves several open research questions.
The first question is to clarify the relationship between the
type of communication channel and the properties of the event
sequences. Although we observed different response behavior
of users in several data sets, it is not clear whether the response
behavior is common for the same type of communication
(e.g., SMS) or is unique for the data set used in this study.
A comparison analysis of different instances of data sets for
the same communication type would provide an answer to
this question. The second question, a more general one, is to
develop better stochastic models to describe the input-output
relationship in social communications. Our proposed model
has a limitation in that it distinguishes neither source nodes of
incoming events nor target nodes of outgoing events. In reality,
there should be heterogeneity in communication patterns
between different user pairs. In addition, our model does not
explicitly consider the structure of social networks. Aside from
the limitation of models, another important issue is to develop
a procedure for evaluating the models. In computational neu-
roscience, proper benchmarks of the goodness of dynamical
models have encouraged researchers to develop better models
that can reproduce the input-output relationship observed in
actual neuronal data [46,47]. Similarly, introducing adequate
benchmarks for social communication data sets would help
us further understand human dynamics on the basis of
quantitative models.
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APPENDIX A: RELATIONSHIP BETWEEN LOCAL
VARIATION AND THE NUMBER OF IETs

The LV values fluctuate over different instances of event
sequence with the same number of IETs. We numerically
investigated the dependency of the standard deviation of the
LV values on the number of IETs for the synthetic event
sequences generated from the gamma process (see Sec. III C
for its definition). Figure 7 shows the standard deviation of the
LV values over different instances as a function of the number
of IETs. Regardless of the parameter values of the gamma
process, the standard deviation algebraically decreases with
the number of IETs and reaches a sufficiently small value
(∼0.1) for 100 IETs.
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FIG. 7. Effect of the number of IETs on the standard deviation of
the LV values. For each point, the standard deviation was calculated
over 100 instances of event sequences generated from the gamma
process with a given number of IETs. The results were well fitted
with a power-law function 1.2n−0.5.

According to the obsevation described in the previous
paragraph, we set the threshold value of the number of
IETs equal to 100 to filter users when we calculated the LV
values in Sec. II C and the following. We confirmed that the
correlation coefficients between LVout and LVin reported in
Fig. 3 are robust against the change in the threshold value (see
Fig. 8).

APPENDIX B: STATISTICAL F TEST
(ANALYSIS OF VARIANCE)

To evaluate how the measures (LV and CV) worked in
discrimination of individual temporal patterns, we conducted
the F test [36], which compares the variance of the measure
means across N users to the mean of the measure variances
across n (=20) fractional sequences of individuals. The null
hypothesis of this test is

μ1 = μ2 = · · · = μN,

where μi is the mean of measure (LV and CV) of user i across n

fractional sequences.
For a given set of LV values {LVij }, each of which is

computed for the j th fractional IET sequence (j = 1,2, . . . ,n)
of user i (i = 1,2, . . . ,N ), the F value is given by

F = n 1
N−1

∑N
i=1(LVi − 〈LV〉)2

1
N

∑N
i=1

1
n−1

∑n
j=1(LVij − LVi)2

, (B1)

where M = Nn is the size of the set of values {LVij } and LVi =∑n
j=1 LVij /n, 〈LV〉 = ∑N

i=1 LVi/N . This F value follows the
F distribution with N − 1, M − N degrees of freedom under
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FIG. 8. Correlation coefficient R between LVin and LVout of the users who have both incoming and outgoing events no less than the
threshold value of the number of IETs. The dotted lines show the 95% confidence intervals of the R values.

the null hypothesis. The same test has been performed for CV.
The subset of users who have no fewer than 1000 IETs are

analyzed in this F test, because each fractional sequence have
no less than 50 IETs to evaluate LV and CV.
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