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Temporal and structural heterogeneities emerging in adaptive temporal networks
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We introduce a model of adaptive temporal networks whose evolution is regulated by an interplay between
node activity and dynamic exchange of information through links. We study the model by using a master
equation approach. Starting from a homogeneous initial configuration, we show that temporal and structural
heterogeneities, characteristic of real-world networks, spontaneously emerge. This theoretically tractable model
thus contributes to the understanding of the dynamics of human activity and interaction networks.
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Human social behavior depends both on intrinsic properties
of the individuals and on the interactions between them.
In daily life, interactions between people create contact
patterns that can be mathematically represented by networks,
i.e., a set of nodes, corresponding to the people, connected
by links, representing the contacts between the respective
individuals [1]. In network terminology, the number of contacts
of a given person is called the degree k of a node and thus the
degree distribution pk is the probability distribution that a
randomly chosen node has degree k. A central observation is
that most real-life networks have a high level of heterogeneity
in the number of contacts per node and the empirical degree
distributions are typically approximated by power laws pk ∼
k−γ [2–4].

A second observation is that human contact networks are
not static. For instance, in studies of email contact networks,
users that are hubs of the network in one time window
may be unremarkable or even isolated in the next time
window [5]. This may reflect the fact that nodes alternate
between an active, contact-seeking state, and an inactive state.
The temporal heterogeneity can then be quantified in terms
of the interevent intervals (IETs) between node activations,
which reveals burstiness of human behavior [6,7].

While several models have been proposed to explain
the heterogeneity in the degree distribution [8–11], fewer
studies focused on modeling the burstiness of the temporal
activity [6,7,12]. Barabási proposed a priority-based model
in which nodes first execute the high-priority tasks, i.e.,
these tasks are executed within a short time, while low-
priority tasks have to wait longer times before leaving the
queue. Other models use inhomogeneous Poisson processes
on each node modulated by (daily and weekly) cycles of
human activity [13,14]. Combined, these processes generate
the patterns of burstiness that are comparable to real-world
data.

While previous models thus describe network heterogeneity
and burstiness as different phenomena, they are connected in
the real world: Network structure is a result of the activity
of the network nodes, while changes in activity are likely to
be triggered by neighbors in the network. The system is thus
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modeled as an adaptive network [15,16], where dynamics of
nodes is affected by network structure, while the evolution of
the structure is dependent on the state of the nodes.

A number of models have been proposed [17,18], in which
the network links are temporal and change according to the
state of nodes [19,20]. In particular, an idea that temporal
links are generated according to the activity parameter of
nodes that is obtained by empirical data was independently
presented in Refs. [21,22]. This modeling framework is
extended to incorporate the memory effect of the past con-
tacts [23,24], which can be also regarded as a type of adaptive
network.

In this Rapid Communication, using the framework of
Refs. [21,22], we consider an interplay between individual
activity and network structure: the human activity is dynami-
cally determined by the state of the node, and simultaneously
the state is updated by the contacts between the nodes, as
illustrated in Fig. 1(a). Our toy model is motivated by interac-
tions in online environments, particularly web forums [25] and
dating sites [26], where there is an interplay between exchange
of information (i.e., messages) and activity (i.e., posting) of
the members, such that past interactions trigger new events.
We analyze the master equation of the model using generating
functions. We show that, starting from homogeneous initial
conditions, structural heterogeneity and temporal burstiness
can emerge spontaneously.

We consider a population of N nodes, where each node i

has an intrinsic variable xi , which we interpret as an abstract
resource representing the node’s willingness to engage with
others in the network. Initially every node is assigned the same
resource quantity, i.e., xi(0) = 1. The system then evolves due
to dynamical updates which comprise three steps: (i) activation
of nodes, (ii) formation of pairs, and (iii) exchange of resources
[Fig. 1(b)].

In the activation step (i) NA nodes are set to the active state,
while all others are set to the inactive state. The active nodes
are chosen initially using a linear preferential rule, such that
the probability that node i becomes active scales with xi . In the
pair formation step (ii) every active node picks a partner. With
probability κ this partner is chosen randomly from all nodes
in the system. With the complementary probability 1 − κ the
partner is chosen randomly from the set of active nodes. This
also reduces to previously studied rules in the limit κ = 0 [21],
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FIG. 1. (a) Question: How do social interactions induce structural
and temporal heterogeneities among people? (b) Illustration of the
interaction-regulated stochastic contact model. Within one time step,
(i) nodes become activated, (ii) make random connections, (iii)
exchange resources, and finally (iv) break down the links.

where partners are only picked among the active nodes, and
in the limit κ = 1 [22], where partners are picked among the
whole network. Finally, in the exchange step nodes transfer an

amount of resource to their partners such that

xi(t + 1) − xi(t) = D

[∑
j

aij (t) −
∑

j

aji(t)

]
, (1)

where D is the amount of resource transferred in the inter-
action, and aij (t) = 1 if i has picked j as its partner, and 0
otherwise.

Throughout the above procedure, this model mimics social
interactions in online, web forums and social networking
services. Users become active according to their willingness
to engage with others denoted by xi , and either comment on
someone else’s threads (random connections over the network)
or respond to posts of other active (connections to active nodes)
members. This will increase the willingness of receivers who
get the comments, whereas it will satisfy the demand of the
senders (resource exchange).

First, we demonstrate the self-organization of the system.
We consider the model from a network perspective. Node i

picking a partner j constitutes the creation of a directed link
from i to j at every step. Thus the matrix a(t) is interpreted as a
directed adjacency matrix. As a result of the temporal contacts
between nodes, the initial identical distribution of resources
on nodes becomes heterogeneous over time. This leads to the
emergence of a dynamic network with structural heterogeneity
and burstiness of node activations, as shown in Fig. 2(a) (see
movie for a dynamic behavior of the model [27]).

By tuning the parameter κ , this model is able to reproduce
different structural and temporal patterns (Fig. 2). In the figure,
we show the degree distribution of the aggregated network
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FIG. 2. (a) A snapshot of dynamic behavior of the model (see movie in Supplemental Material for details). (b)–(g) The degree distribution
P (k) and single-node IETs distribution Ps(�t) for [(b),(c)] κ = 0 [Ps(�t) is plotted in a semilogarithmic graph], [(d),(e)] κ = 0.001 (both
graphs are log-log), and [(f),(g)] κ = 0.1 [Ps(�t) is semilogarithmic], with NA = 1024, N = 215, and D = 0.01.
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which is formed by all links collected during Ts = 104 time
steps, and the IET distribution of a single node during 5 × 107

steps. If κ = 0, a small group of active nodes emerges. Nodes
outside this group are left without resources. In this situation,
the IET distribution of the active nodes exhibits a Poisson-
like dynamics, i.e., exponential interevent times [Fig. 2(c)].
By contrast, sufficiently large κ leads to a homogeneous
distribution of resources, which generates a Gaussian-like
in-degree distribution [Fig. 2(f)] and an exponential (single-
node) IET distribution [Fig. 2(g)], the latter a result of the
quasihomogeneous Poisson process. In the intermediate case,
where active nodes mainly link to other active individuals but
also occasionally inactive ones, we observe the emergence
of highly heterogeneous structure [Fig. 2(d)] and temporal
patterns [Fig. 2(e)]. Owing to the period for aggregation
Ts(= 104), the network has an upper limit of the degree and
its distribution has an exponential cutoff. In this situation, the
distributions of the weights and the IETs at a link level are also
very heterogeneous, and can be fitted by a power law (data not
shown).

To make theoretical progress we construct a master equation
for the resource dynamics. We define un(t) as the density of
nodes i at resource level xi = nD. Setting the total resource
in the system to

∑
nDun = 1 and assuming large N and NA,

the probability that a node at resource level n becomes active
is an = (NA/N )(nD/

∑
n nDun) = nDNA/N . Therefore, the

proportion of nodes that are both active and at resource level
n is anun = NAnDun/N .

Since the total number of active nodes is NA, NA links
are formed in every time step. Of these, M1 := NAκ links
point to random targets chosen among the whole population,
whereas M2 := NA(1 − κ) point to targets chosen only among
the active nodes. From the perspective of a single node the
placement of a link can be seen as a statistical trial that is
successful if that specific node is chosen as the target of the
link. Every node, irrespective of state, receives a link with
probability ρ1 = 1/N in each of the M1 trials where the targets
are random nodes. In addition, active nodes receive a link with
probability ρ2 = 1/NA in each of the M2 trials where the
targets are random active nodes.

Each node then gains D units of resource for every
incoming link, while active nodes lose D units of resource via
their outgoing link. Using the binomial distribution B(m,ρ,M)
of m success in M trials, then leads to the master equation

dun

dt
= A(−1)an+1un+1

−C1anun − C2ānun

+
NA∑

m=1

an−mun−mA(m)

+
NAκ∑
m=1

ān−mun−mB(m,ρ1,M1), (2)

where we now treat time continuously and
ān(= 1 − an) is the inactive fraction of un(t),
A(m) = ∑

m1+m2=m+1 B(m1,ρ1,M1)B(m2,ρ2,M2), and

C1 = 1 − A(0), C2 = ∑NAκ
m=1 B(m1,ρ1,NAκ).

For the analysis of the master equation it is useful to
write a generating function Q(t,x) = ∑

n un(t)xn [27,28].
This function encodes the un in a continuous function by
interpreting them as Taylor coefficients in an abstract variable
x, which does not have a physical meaning. Multiplying Eq. (2)
by xn and summing over n � 0 we obtain

∂Q

∂t
= NAD

N

∂Q

∂x

[
A(−1) + (−C1 + C2)x +

NA−1∑
m=1

A(m)xm+1

−
NAκ∑
m=1

B(m,ρ1,M1)xm+1

]

+Q

[
−C2 +

NAκ∑
m=1

B(m,ρ1,M1)xm

]
. (3)

In the limit N,NA → ∞, we approximate the binomial
distributions reduce to Poisson distributions with finite rates,
λ1(= ρ1M1 = NA

N
κ) and λ2(= ρ2M2 = 1 − κ), respectively.

We obtain

∂Q

∂t
= NAD

N
Y (x)

∂Q

∂x
+ Z(x)Q, (4)

where Y (x) = exp[(λ1 + λ2)(x − 1)] − x exp[λ1(x − 1)] and
Z(x) = −1 + exp[λ1(x − 1)]. Thus the generating approach
has converted the large system of ordinary differential equa-
tions to a single partial differential equation.

When considered in the stationary state, Eq. (4) relates Q to
its own first derivative Q′. For any probability distribution the
corresponding generating function must obey Q(1) = 1. We
can therefore find Q′(1) and by differentiating Q′′(1). These
quantities are of interest because Q′(1) = μ is the mean of
un and Q′′(1) is closely related to the variance σ 2 = Q′′(1) +
Q′(1) − Q′(1)2 of un. From this we can obtain the mean μx

and variance σ 2
x of the resource distribution

μx = 1, (5)

σ 2
x = D

2κ

[
1 − 2κ +

(
1 − NA

N

)
κ2

]
+ D. (6)

In the case where targets are almost always chosen among the
active nodes (κ ∼ 0), we find the resource amounts among
nodes will be extremely heterogeneous [Fig. 3(a)]. This result
is also found in agent-based simulations as shown in the inset
of Fig. 3(a), in which the resource distribution is well fitted by
a power law x−1 in some ranges. We further confirmed that
the same scaling behavior also appears in a continuous-time
version of the model (not shown). These results are interesting
since the power-law exponent γ = 1 differs from 2 < γ <

3 that is reported to most scale-free networks in empirical
studies [1,29]. At present we do not have an explanation for
this exponent and cannot strictly exclude that the 1/k behavior
is an extremely long transient.

The master equation loses information on the temporal
activity of the nodes. Instead of single-node IETs Ps(�t), we
thus consider the population IETs Pe(�t). If the amount of
resources is fixed, the activation of u∗

n can be described by a
Poisson process with a fixed rate an. In general, the population
IETs of homogeneous Poisson nodes {pi} (i = 1,2, . . . ,N ) is
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FIG. 3. (a) The variance σ 2
x of the stationary resource distribution

given by Eq. (6) (red line) and for the simulation of the agent-based
model (black circles). We use D = 0.01, NA = 1000, and N = 215.
The inset shows the resource distribution for κ = 0.001. (b) The
distributions of population and single-node IETs, respectively, Pe(�t)
and Ps(�t). The master equation analysis predicts Pe(�t) ∝ �t−2.

given by [14]

Pe(�t) =
∑

i

pie
−p�t =

∫
f (p)pe−p�tdp,

where f (p) is the rate distribution in the limit of N → ∞.
In this equation, only the first time interval of the node’s
activations is collected for each node [14]. The second, third,
and succeeding intervals should be taken into account for
population IETs during a given observation period. The higher
the rate of a node, the more likely the IET data is collected
from this node. The probability of the IET should be multiplied
by the rate p, and then the equation is rewritten as

Pe(�t) =
∫

f (p)p2e−p�tdp ∝ �t−2. (7)

In the last part, we considered the case of f (p) ∝ p−1, because
u∗

n follows the power law with exponent −1. Figure 3(b) shows
the distributions of the population IETs with the observation
period To = 105 and of the single-node IETs of a uniformly
sampled node, obtained by the direct simulation of the model
with the same parameters as in Fig. 3(a). We find that both
IETs, Pe(�t) and Ps(�t), are close to the power law predicted
theoretically.

The resource amount of a node xi determines its activation
probability ai , i.e., ai ∝ xi . A natural extension is to consider
nonlinear preferential connections (ai ∝ xα

i ) [25]. In some
situations there is an advantage of large scale, in which
accumulated resource enhances superlinearly the activity of a
person (α > 1). On the other hand, there may be saturation
of the effect of the resources, causing sublinear activity
(α < 1). Figure 4 shows that the nonlinear preferential rule also

P(kin) ~ kin
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FIG. 4. Effect of nonlinear activation probability. (a) The degree
distribution P (k). (b) Single-node IET distribution Ps(�t) (log-
log graphs). We use α = 2, κ = 0.0001, D = 1, NA = 512, and
N = 8192.

produces the power-law distributions of node degree and IETs,
but with different exponents. The power-law exponent is about
2 for the degree distribution and about 1.5 for IETs distribution
if α = 2. Our findings are consistent with empirical results of
online communication in a web forum [25] and with corre-
spondence patterns (waiting times) of famous scientists [7],
reinforcing the intuition that some classes of communication
processes are regulated by feedback mechanisms between
information available and human activity.

In this Rapid Communication, we proposed a model of
contact networks where the human dynamics are adaptively
regulated by past interaction and exchange of resources. We
analyzed the master equation of the model and found structural
and temporal heterogeneities which are remarkable properties
observed in many real-world systems. This revealed that these
two types of heterogeneity can be observed in rich-clublike
systems where the active individuals typically communicate
with other active individuals, but occasionally connect to
anyone in the network.

Despite the relative simplicity, the model provides a poten-
tial mechanistic understanding of the online communication
dynamics, pointing to a number of unsolved questions, includ-
ing the exact nature of the observed transition. Moreover, there
are other important structural and temporal properties that our
model cannot explain, such as community structure [30–32].
We therefore hope that it will stimulate future work, leading
to deeper insights in the behavioral patterns of humans.
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