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Heterogeneity induces emergent functional networks for synchronization
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We study the evolution of heterogeneous networks of oscillators subject to a state-dependent interconnection
rule. We find that heterogeneity in the node dynamics is key in organizing the architecture of the functional
emerging networks. We demonstrate that increasing heterogeneity among the nodes in state-dependent networks
of phase oscillators causes a differentiation in the activation probabilities of the links when a distributed local
network adaptation strategy is used in an evolutionary manner. This, in turn, yields the formation of hubs associated
to nodes with larger distances from the average frequency of the ensemble. Our generic local evolutionary strategy
can be used to solve a wide range of synchronization and control problems.
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I. INTRODUCTION

Evolution is a fundamental force driving the organization
and structure of natural systems. It is based on two key
ingredients: variation and natural selection [1]. The first
ensures the necessary mutation and recombination generating
new species while the second determines the survival of the
fittest to perform a certain function. Networks in Nature have
been subject to the same powerful mechanisms that ultimately
determined their structure, properties and functionality. The
resulting networks have heterogenous topological structures,
which researchers have been interested in together with
their effects on dynamical processes [2]. Examples include
epidemic spreading, opinion formation, and synchroniza-
tion [3,4]. Often there is also heterogeneity in the nodes of
a network. For example, in social networks, individuals have
different personalities, which will have great impacts on their
social relationships; or, in manufacturing, industrial products
are slightly different from one other, affecting their impact
and market shares. The relationship between the heterogeneity
of the nodes and the structural properties of a network is
little understood, particularly when the network evolution is
state-dependent.

Here we suggest that heterogeneity in the nodes is a
driving force behind the evolution of the network structure
that determines its properties and function. To test this Ansatz
we take as a representative example the problem of evolving
the network structure to achieve synchronization of coupled
oscillators. This is one of the best understood and most widely
studied types of collective behavior on networks [4–8].

So far, optimal network structures for synchronization have
been studied mainly by using Monte Carlo methods [9–12] or
gradient-based learning strategies [13,14]. These are based on
the use of some objective function for synchronization (as, for
example, the order parameter) which is used to find the optimal
network whose structural properties are then surveyed. The
Monte Carlo approach is a generic and powerful strategy but
it is typically time-consuming, and increasingly cumbersome
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to apply to large-scale networks. Gradient-based methods
assume some constraints to derive the evolution rule of the
coupling strengths and the rules are often not local, in the
sense that some global information on the entire network is
used. Also, it has been shown that adaptive networks can yield
the emergence of modular and scale-free structures, while
enhancing synchronization [15].

In this paper, we propose the use of an evolutionary
strategy to find a functional structure for synchronization
in a network of heterogeneous oscillators. In so doing we
will show that heterogeneity in the nodes is instrumental in
determining the properties of the resulting network. The goal
of the strategy is to identify, over all possible unweighted
network configurations, the structure with a minimal number
of links, which guarantees frequency synchronization of its
nodes. While the fundamental aim of our study is similar to that
of the literature [9–15], the approach we propose is completely
different. Indeed, our strategy uses adaptive schemes which are
completely local and do not rely on any global synchronization
measure. Moreover such schemes are deployed in a novel
evolutionary manner.

II. PROBLEM STATEMENT

We start by considering a network of general nonlinear
coupled oscillators

ẋn = fn(xn) + c

N∑
m=1

knm g(xm,xn), (1)

where xn ∈ Rp is the p-dimensional state of the nth oscillator,
fn denotes its dynamics (note that oscillators can be slightly
different from each other due to both parameters and model
mismatches), g is a generic coupling function, and knm are
time-varying coupling gains determining the strength of the
coupling between neighboring oscillators.

We model the evolutionary pressures to reach synchroniza-
tion by considering state-dependent second-order nonlinear
dynamics for the gains dependent upon a double well potential
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V (x) = bx2(x − 1)2. The gain dynamics are given by

k̈nm + d k̇nm + ∂V (knm)

∂knm

= h(‖xm − xn‖), (2)

in which h(‖xm − xn‖) is a generic increasing function such
that h(0) = 0. Note that this is a very general adaptive
network equation relying on a decentralized, local, state-
dependent interconnection rule, named as “edge-snapping” in
[16] (see Appendix A for further details). This system can be
systematically reduced, under a standard technique [5], to the
network of adaptively coupled phase oscillators:

θ̇n = ωn + 1

N

N∑
m=1

knm�(θm − θn), (3)

k̈nm + d k̇nm + ∂V (knm)

∂knm

= h(‖θm − θn‖), (4)

in which θn is the phase of the nth generic oscillator,
�(θm − θn) is a generic 2π -periodic function. We set the
overall coupling strength K to a unitary value, since it can
be absorbed into a parameter defining the heterogeneity of the
natural frequencies by rescaling time, i.e., by setting τ = Kt .
In this paper we analyze, for the sake of clarity, the simplest
case

�(θm − θn) = sin(θm − θn), (5)

h(‖θm − θn‖) = α
[
1 − 1

2 |eiθn + eiθm |]. (6)

Under such a forcing, the dynamics of knm [starting from
zero initial conditions knm(0) = 0 and k̇nm(0) = 0], will either
converge towards 0 (link is not present) or towards 1 (link is
activated).

The differences in the natural frequencies of the oscillators
originate from the heterogeneity of the node dynamics fn

in weakly coupled nonlinear oscillators [5]. In what follows,
these natural frequencies are selected deterministically from a
Gaussian distribution with zero mean and standard deviation
equal to σ . Therefore, the parameter σ can be used to “tune”
the level of heterogeneity among nodes.

We note here that when the number of nodes is not so large,
such as N = 6 or 7, the natural frequencies sampled from a
distribution can be biased. To avoid the effect of the biased
sampling, we deterministically select the natural frequencies
of the oscillators, similarly to [11], as the N -tuple satisfying
the constraints:∫ ω1

−∞
g(ω)dω = 1

N + 1
, (i = 1),

∫ ωi

−ωi−1

g(ω)dω = 1

N + 1
, (i = 2, . . . ,N),

where g(ω) is the probability density function of a given
distribution. It should be noted that for a large network,
we performed our simulation taking the natural frequencies
randomly from a distribution and the obtained results are
qualitatively the same.

Next, we investigate how the evolution of the network is
affected by tuning the heterogeneity in the nodes. To this
aim we use the edge snapping strategy described above in
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FIG. 1. (Color online) Schematic description of the evolutionary
edge-snapping strategy. Step 1 (variation): computation of link
activation probabilities by running the edge-snapping strategy from
many different random initial conditions. Step 2 (selection): selection
of those links whose activation probability is above some threshold
value p∗.

a novel evolutionary manner (see Fig. 1) as explained in the
next section.

III. EVOLUTIONARY EDGE-SNAPPING

The evolutionary Edge-Snapping technique is based on two
fundamental steps: one implementing the variation ingredient
of evolution, the other its selection mechanism.

To implement the variation ingredient of evolution, a set
of unweighted networks is generated using Eqs. (3) and (4)
starting the process from different sets of initial conditions. We
consider a set of nS initial conditions randomly selected using
a Latin Hypercube strategy [17] in the range θn(0) ∈ [0,2π [,
n = 1,2, . . . ,N . To obtain the “fitness” of each link, we next
compute the probability pij of each link being activated as
the fraction between the number of generated networks where
that link is present, say nij , and the total number of trials, e.g.,
pij = nij /nS . This yields a stochastic N × N matrix P whose
elements are the probabilities of activation of every possible
link among nodes.

The selection rule is obtained by selecting only those
links whose activation probability is above a certain critical
threshold value p∗, i.e., such that pij > p∗. We choose p∗ so
as to guarantee that the resulting network is connected and has
the smallest number of links. We shall term such a network as
the minimal edge-snapping (ES) network.

The variation step of our evolutionary strategy relies on the
generation of a set of nS unweighted network using Eqs. (3)
and (4) and starting the process from a different set of initial
condition. With the aim of choosing a reasonable value for the
number of trials nS , we plot in Fig. 2(a) the standard deviation
of the link activation probability pij as a function of nS . As can
be noted, the differentiation in the pij is quite constant as nS
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FIG. 2. (Color online) (a) Standard deviation of the link activa-
tion probability pij as a function of the number of trials nS . (b) Order
parameter and relative number of links of the minimal ES structure
as a function of the number of trials nS .
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varies from 100 to 1000. Thus we select nS = 100 in all of our
simulations. Indeed this guarantees a good degree of variation
with the least computational cost. Finally, Fig. 2(b) confirms
that the dynamical and structural properties of the emerging ES
minimal structure do not show significant fluctuations when
the value of nS is increased.

Note that the state space of the initial phases of many
oscillators is a high-dimensional space (i.e., the aggregate N -
dimensional state space obtained collecting the phase of each
oscillator in the stack vector 
 = [θ1,θ2, . . . ,θN ]). To obtain
effective samplings from that space, as mentioned above, we
adopted a Latin Hypercube Sampling (LHS) strategy first
proposed in [17]. LHS is a statistical method for generating
a sample of plausible collections of parameter values from
a multidimensional distribution. Specifically, let X denote a
N variate random variable with probability density function
f (x) for x ∈ S. Then the range space of each of the N

components of X is partitioned in nS disjoint intervals Si of
size pi = P (X ∈ Si) = 1/nS . Taking the Cartesian product
of these intervals yields nN

S cells each of probability size
n−N

S . Each cell can be labeled by a set of N coordinates
mi = (mi1,mi,2, . . . ,miN ), where mij is the interval number
of component Xj represented in cell i. A LHS is obtained
from a random selection of the cells m1, . . . ,mnS

, with the
condition that for each j the set {mij }nS

i=1 is a permutation of
integers 1,2, . . . ,nS . As a result, one random observation is
made in each cell. The main advantage of the LHS strategy is
that it does not require more samples for more dimension of
the range space S. This is the main reason why we use LHS in
our method.

To measure the synchronization performance of a ES net-
work, we consider an ensemble of phase oscillators connected
by that network and evaluate Kuramoto order parameter as
Reiψ = 1

N

∑N
n=1 eiθn .

IV. EMERGENCE OF MINIMAL NETWORKS

We first test our strategy by applying it to a small size
network with N = 6 and σ = 0.3 (Fig. 3). We obtain the P

matrix visualized in Fig. 3(a). In Fig. 3(b), as the threshold
value p is increased, the number of edges, M , is shown to
rapidly decrease while the value of the order parameter R

remains near unity.
In the figure, the normalized number of edges, which

is divided by maximum links between N nodes, i.e., M̄ =
M/Ma2a , is plotted. Also above a certain threshold the
network becomes disconnected. Therefore we choose p∗ =
0.57 obtaining the minimal ES network depicted in Fig. 3(c)
which is characterized by M = 7 edges and R = 0.96. We
compare the minimal ES structure with the optimal network
structure shown in Fig. 3(d) obtained from an exhaustive search
and a Monte Carlo based method (See Appendix B for further
details) [12] maximizing the value of R with the constraint
that the total number of edges M is equal to 7. We notice that
the two networks share the same links.

Next, we study how heterogeneity induces functional
structural properties of the network. Figure 4 shows the P

matrix as a function of the heterogeneity parameter σ when
N = 20. We see that as σ is increased a differentiation
becomes more and more apparent in the distribution of the
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FIG. 3. (Color online) (a) Link activation probabilities pij in the
case of N = 6 generated by the variation stage of the evolutionary
ES strategy; (b) Selection of the threshold probability value p:
order parameter R, relative number of links M̄ . The arrow on the
x-axis indicates the critical threshold p∗ which gives the minimal ES
network; (c) Minimal Edge-Snapping Network; (d) Optimal network
maximizing R obtained by exhaustive search and a Monte Carlo based
method.

link activation probabilities pij with edges between oscillators
with relatively different frequencies becoming more likely to
occur in the minimal ES structure.

Figure 5(a) shows the standard deviation of the link
activation probabilities pij as a linear function of σ in a larger
network of N = 100 oscillators. The structural properties of
the emerging network are therefore induced by the node het-
erogeneity. This is confirmed in Fig. 5(b) where the maximum
and minimum values of the node degree ki , corresponding to
each minimal ES network, is plotted as a function of σ . The
behaviors of the maximum value of ki (red dashed line) and
the minimum of ki (black solid line) show an abrupt transition
when passing from σ = 0 to σ > 0. This suggests that the
differentiation in the degree distribution of the minimal ES
network becomes remarkable when heterogeneity in the nodes
is increased from zero (identical oscillators) to a value greater
than zero (non-identical oscillators).

The structural properties of the emergent minimal ES
network are highlighted in Fig. 5(c)–5(f) for a network of
highly heterogeneous N = 100 oscillators (σ = 0.2). The
activation probability of each link is plotted in Fig. 5(c) against
the value of the difference between the natural frequencies of
the oscillators at the endpoints. Links connecting more distant
nodes tend to be activated with a higher likelihood confirming
that differentiation among links is induced by heterogeneity
in the nodes. Also, as shown in Fig. 5(d), hubs tend to be
associated with oscillators whose frequencies are farther away
from the average. The functional advantage of the emerging
network is shown in Fig. 5(e). Indeed, we observe that the
order parameter of the minimal ES structure is close to its
maximal value for an all-to-all network of the same size, even
if the number of links in the minimal ES network is remarkably
lower than that in an all-to-all configuration. For the sake of
comparison, the values of R for a randomly generated network
of the same number of edges is also depicted in Fig. 5(e). The
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FIG. 4. (Color online) Heterogeneity induces functional structural properties of the network. P matrix as a function of the heterogeneity
parameter σ when N = 20.

sudden dip of R is due to the graph becoming disconnected
beyond that critical value of the threshold p∗.

Notice that, as shown in Fig. 5(f), as the coupling strength
K is varied, the order parameter R of the phase oscilla-
tors interconnected by the minimal ES network exhibits a
sudden hysteretic change, associated to a discontinuous phase
transition, whereas the system with a unimodal frequency
distribution undergoes a continuous phase transition [5]. This
discontinuous phase transition, also known as “explosive
synchronization”, has been studied in the literature [18–21],
also in the case of adaptive networks [22,23], revealing that
the correlation between natural frequencies and the node
degree, as shown in Fig. 5(d), can induce this phenomenon.
Here, we wish to emphasise that the proposed evolutionary
strategy, which functionally organizes the network structure

for synchronization, changes the type of phase transition that
would be generically observed otherwise, inducing explosive
synchronization.

Our results clearly show the role of node heterogeneity in
inducing functional structures using an evolutionary strategy
for network synchronization. In particular, differences in the
node dynamics do influence the evolution of the network
determining a differentiation in the link activation probabilities
that is instrumental to obtain minimal structures with relatively
high values of the order parameter. Also, hubs tend to emerge
there where the distance from the average natural frequency is
highest. Further simulations also confirmed that a similar struc-
ture of the emergent network can be induced by using a power-
law rather than a normal distribution when selecting the hetero-
geneous natural frequencies of the oscillators (data not shown).
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FIG. 5. (Color online) Structural properties of the emergent minimal ES network with N = 100 and σ = 0.2. (a) Standard deviation of the
link activation probabilities pij as a function of σ . (b) Maximum (red dashed line) and minimum (black solid line) value of node degree ki as a
function of σ . (c) Activation probability of each link against the value of the difference between the natural frequencies of the oscillators at the
endpoints. (d) Node degree ki vs. ωi . (e) Order parameter R (red solid line) and relative number of links M̄ (blue solid line) of the ES network
as a function of the threshold probability value p. For comparison, the value R is depicted for an all-to-all network (purple dashed line) and
for randomly generated networks (blue dot-dashed line) with the same number of links. The arrow on the x-axis represents the threshold p∗

to give the minimal ES network. (f) Order parameter R of the phase oscillators interconnected by the minimal ES network when the overall
coupling strength K is increased (red solid) and decreased (blue dashed). We set N = 300 and σ = 0.2.
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It is notable that the presence of hubs seems to characterize
the emergent networks for synchronization when the nodes
are heterogeneous as opposed to more homogenous structures,
such as entangled networks, which have been suggested to be
optimal structures in the homogeneous case [9]. This is also
confirmed in the case of Monte Carlo based optimal networks
in [11] where the presence of links between nodes with more
distant frequencies is shown to be more likely and in the recent
paper [14] based on the use of gradient-based methods. Here
we obtain a further confirmation of these observations but via a
generic local evolutionary strategy that is state-dependent and
can be applied to a wider range of network synchronization
and control problems.

V. CONCLUSIONS

Our results suggest that heterogeneity is the driving force
determining the evolution of state-dependent functional net-
works. This can explain the structural properties detected in
natural networks such as neural interconnections in the brain,
gene regulatory networks or ecological networks where the
states of the nodes typically affects the evolution of their
interconnections [24–27]. It can also be used in dynamical
systems and control theory to design state-dependent evolu-
tionary strategies able to induce a desired collective behavior
in a network of interest.
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APPENDIX A: DESCRIPTION OF THE EDGE
SNAPPING METHOD

Edge Snapping [16] is an adaptive strategy for the evolution
of an unweighted network. Time-varying coupling gains knm

are assigned to all pair of nodes n and m, with a second-
order dynamics affected by a double well potential V (knm) =
bk2

nm(knm − 1)2 defined as

k̈nm + d k̇nm + ∂V (knm)

∂knm

= h(‖xm − xn‖),

where d is a damping coefficient, xn and xm are the states
of the nodes at the endpoints of the edge (n,m). The driving
force h(‖xm − xn‖) is a generic increasing function such that
h(0) = 0.

The gains’ dynamics mimics the damped motion of a
particle in a one-dimensional space subject to a double-well
potential as schematically outlined in Fig. 6. Indeed, in
Fig. 6(a) the initial forcing is strong enough to drive the mass
particle from the equilibrium at 0 (edge turned off) to the well
associated to the equilibrium at 1 (edge activated). On the
contrary, in Fig. 6(b) the forcing input to the edge snapping
dynamics is not able to move the particle from the equilibrium
at the origin. As a result of these dynamics, each coupling gain
knm converges to either one of the equilibrium points, 0 or 1.

Note that the dynamics of the gains knm is interdependent on
the dynamics of the nodes’ state xn (in this paper, the dynamics
of the states is given by a coupled oscillator dynamics among
nodes). The resulting unweighted network is the outcome of
the co-evolving dynamics of the nodes and the state-dependent
network. This strategy is based on a distributed adaptive
nonlinear approach and is therefore a generic decentralized
method relying only on a nonlinear potential to drive edge
adaptation as explained in [16].

In addition, the edge-snapping strategy contains two param-
eters b and d, which can be used to control network evolution.
Indeed the barrier of the potential between the two wells acts
as a constraint. As explained above, if the driving force is not
strong enough, the edge, after a transient, will remain in the
well corresponding to the absence of link. The height of the
barrier can be tuned varying the parameter b in the expression
of the potential V . The higher the barrier b, the stronger the
constraint.
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FIG. 6. (Color online) Edges’ evolution according to the edge snapping mechanism.
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FIG. 7. (Color online) Schematic illustration of NetEvo.

APPENDIX B: NETEVO

NetEvo is a computational framework designed to help
understanding the evolution of dynamical complex net-
works [25]. It provides flexible tools for the simula-
tion of dynamical processes on networks and methods
for the evolution of underlying topological structures (see
[http://www.netevo.org] to download the code and for further
information). To bring together simulation and evolution in a
coherent way, the framework uses the idea of a supervisor,
illustrated in Fig. 7. Evolution of the system is performed by

the supervisor which can be viewed as a form of optimizer.
This takes as input an initial topology, simulated output from
the system and user defined constraints, and aims to return
an optimal or enhanced topology. Changes to the system are
assessed by using the performance measure −R (the opposite
of the order parameter), with smaller values representing
an improved performance. By default, NetEvo provides a
supervisor that uses a simulated annealing metaheuristic to
search for near optimal configurations. This method has been
shown to perform well for a wide range of problems with an
unknown prior structure.

We tuned NetEvo to find an optimal structure, given an
initial condition (the same used in the procedure for finding
the minimal structure). Simulated annealing tends to avoid
local minima (or maxima), so we could start the optimization
from any random connected network structure. However, we
decided to start “near” the minimal structure, to facilitate the
optimization (by near, we mean a structure obtained from the
minimal structure, after rewiring about 10% of its edges).

We note here, that it was necessary to run NetEvo several
times (i.e., nNE = 10 times), because of local maxima traps
that the algorithm could not avoid. Finally, the optimal
(or sub-optimal) structure is selected as the network that
maximize R (starting from θ0), among each of the nNE

results.
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