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Self-organization of complex networks as a dynamical system
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To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay
between the dynamics of random walkers on a weighted network and the link weights driven by a resource
carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics
lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource
quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic
dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and
chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network
dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the
states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
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I. INTRODUCTION

Our daily lives are closely related to various biological,
engineering and social networks, such as gene regularity net-
works, neural networks, food webs, communication networks,
traffic networks, power grids, and social network services.
Extensive studies of these networks have been made in the
past decade, revealing the specific statistical structures of the
networks and offering insights into the generating mechanisms
[1,2]. Moreover, many types of dynamical processes on the
networks have been studied [3,4]. Today, researchers have
begun to focus on the intersections between network structure
and dynamics.

Most previous studies have analyzed the dynamical pro-
cesses that occur on static networks, which comprise fixed
structures that do not change with time. In contrast, real-world
complex networks are continuously changing with time, in
response to alterations in the network states. For example,
worldwide traffic and communication networks are constantly
developing to meet the evolving needs of society.

This dynamic aspect of complex networks is a growing
interest for many disciplines [5,6]. To appreciate how networks
will change and to know how to manage them, we need to
understand the nature of network dynamics. There is a close
interdependency between the reformation of networks and
their dynamical processes. For example, consider networks for
the transport of people and products between and within cities.
As cities develop or decay, traffic networks are frequently
reformed to meet current needs, either by the construction of
new roads or by the closure of existing roads. Network refor-
mation causes changes in traffic patterns and influences further
expansion or contraction in cities. Thus, the reformation of
road networks is interdependent with the traffic dynamics. Web
browsing traffic is guided by links on the web. Heavy traffic
at one site will lead to the creation of additional links to that
site. On social network services, such as Facebook and Twitter,
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people tend to gather around concurrent topics, which induces
the drastic formation of new social relationships and initiates
further movements in these networks. A similar process occurs
in biological systems. In a neural network, the nerve cells in the
brain connect to other cells via synapses, whose connections
drastically changes in response to neuronal activities. Another
example is the gene regulatory network, in which the rates
of interactions dynamically change depending on the reaction
products of the specific gene regulatory system.

The essence of these changing networks resides in the
interplay between two kinds of co-evolving dynamics: specifi-
cally, the reformation and dynamical processes of the network.
Some interesting issues that arise include the questions of
what emerges from this interplay and how the interactions are
spontaneously organized. Although this interplay makes the
system inherently difficult to analyze, this kind of challenging
problem is inherent in physics.

The co-evolving dynamics of adaptive networks has been
studied independently in diverse scientific fields, as reviewed
by Gross [5]. However, the fundamental properties that are
evoked by the interplay have not been well studied, particularly
from a systematic perspective. To develop this research area
further, some useful toy models are needed that can capture
the essences of the dynamic aspect of real-world networks.

In our previous paper [7], we considered a simple model of
co-evolving network dynamics, which combines the dynamics
of random walkers on a weighted network with the dynamics
of the link weights driven by a resource carried by the walkers.
The resource quantity defines the state of the node. This model
is completely deterministic without any random process.
Thus, in this paper, we extensively analyze the emergent
network from the viewpoint of the dynamical system. From
this detailed analysis, we investigate what type of structured
network emerges and what dynamics underlie the network
organizations.

This paper proceeds as follows: In Sec. II we describe the
model that we use in this paper, which is a little more general
than that proposed in Ref. [7]. In Sec. III, we demonstrate
that, under feasible conditions, the power-law distributions
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of the resource and link weights emerge spontaneously from
the co-evolving dynamics. Under the macroscopic steady-state
condition, the amount of resource at individual nodes and their
link weights continue to change at the microscopic level. In
Sec. IV, we investigate the behavior of the organized scale-
free network from the perspective of the dynamical system.
We focus on the types and number of attractors and the type
of bifurcation that are found in the system. This information
reveals the nature of the network that emerges from the co-
evolving dynamics. Finally, Sec. V summarizes and discuss
our findings.

II. MODEL

Diffusion is a fundamental process that is related to many
physical and social phenomena of real-world networks, such
as traffics, transports, human mobility, information dissemina-
tions, and epidemic spreading [3,4,8]. Therefore, we consider
a diffusion process on a weighted network as a paradigm for
dynamical processes on networks. The state of each node at
time t is represented by the current amount of the diffusive
resource at the node, xi(t). In real-life situations, the resource
may be molecules, cells, people, money, data packets, and
so on. The network topology with N nodes is given by an
adjacency matrix aij . The link weight from the j th to ith node
for each existing link is denoted by wij . We assume that the
resource diffuses over a weighted network carried by many
random walkers. Then, the diffusion process is described by

dxi(t)

dt
= F (xi(t)) + D

∑
j∈Ni

[Tij (t)xj (t) − Tji(t)xi(t)], (1)

where D is a diffusion scale parameter that controls the
strength of diffusion over the whole system. The diffusion
matrix Tij (t) is given by wij (t)/sj (t) and sj (t) [=∑

i wij (t)]
is the strength of the node j . Ni is the set of nodes connected
to the ith node. The second and third terms are the inward
and outward currents of the resource, respectively. The first
term F (x) describes a reaction process at the node, which
represents the intrinsic dynamics of the resource except for
the diffusion process. We assume a simple dissipation process
with an equilibrium state, given by

F (x) = −κ(x − 1),

where κ is a decay constant. The total amount of resource over
the network,

∑
i xi(t), always converges to N , according to the

equation, d
∑

i xi (t)
dt

= −κ[
∑

i xi(t) − N ]. To maintain the total
amount of resource, the initial amounts of the resource at the
nodes are constrained to satisfy the condition

∑
i xi(0) = N .

A significant feature of the network is that the diffusion
matrix Tij (t) changes with time depending on the amounts
of resource. For the sake of simplicity, we assume that the
topology of the network aij is constant and that the link weights
wij (t) for existing links (aij =1) are time dependent. Thus, we
consider the dynamics of the link weights (i.e., interaction
strength) to be a function of the resource.

The amount of resource represents the centrality of the
node. For example, a link to a resource-rich (or resource-
poor) node tends to be strong (or weak). The interaction
strength, wij (t), will be proportional to xi(t) and xj (t). It

Reaction-Diffusion
process of resouces

Resource-driven
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+
-

FIG. 1. (Color online) Schematic illustration of co-evolving net-
work dynamics, combining the dynamics of the resource carried by
random walkers and the resource-driven dynamics of the link weights.

is straightforward to introduce a generalized form of the
nonlinear dependency on xi(t) and xj (t). Then, we introduce
a simple relaxation process, similar to the law of mass action,
in the form

dwij (t)

dt
= ε[xi(t)xj (t) − wij (t)], (2)

where ε controls the relaxation time scale of the weights.
Equation (2) indicates that the richer the resource-containing
node is, the stronger the links will be that connect to the node.
If a link weight approaches zero due to a poor resource on
the endpoint node, then the link is effectively removed. In this
sense, the dynamical process determines the effective topology
of the network.

Finally, by combining Eqs. (1) and (2), we obtain the
equations for the model (Fig. 1):

dxi(t)

dt
= κ − (D + κ)xi(t) + D

∑
j∈Ni

wij (t)

sj (t)
xj (t), (3)

dwij (t)

dt
= ε[xi(t)xj (t) − wij (t)]. (4)

We assume that the underlying network topology is undirected,
and that the weights of the links are symmetric. In the
numerical simulations, we use the following map equations
by solving the ordinary differential equation system by the
Euler method:

xi(t + 1) = κ + (1 − κ − D)xi(t) + D
∑
j∈Ni

wij (t)

sj (t)
xj (t),

(5)

wij (t + 1) = (1 − ε)wij (t) + εxi(t)xj (t). (6)

The time step width h can be absorbed into the parameters
that characterizes the model, Dh → D,κh → κ , and εh → ε.
Each of these dynamics is trivial by itself. If the network is
static (i.e., the weights are time-independent), then Eq. (5)
of the resource has a unique stable fixed point, according
to the Perron-Frobenius theorem. On the other hand, if the
resource distribution is static, then the weights of the links are
regulated by a negative feedback with decay time constant
ε−1, adjusted to the resource quantity. However, the com-
bined system exhibits nontrivial behaviors (as shown later in
Sec. III), revealing the complex properties of changing
networks. Thus, we focus on the parameters for cases in which
the time scales of both dynamics are comparable.
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FIG. 2. (Color online) Typical behavior of the co-evolving dynamics. At each time, the resource is concentrated into a few nodes, which
strengthens the link weights around them. Resource quantities at the nodes and the link weights between them continue to change forever at
the microscopic level, whereas they converge to heterogeneous distributions at the macroscopic level. The parameters are as follows: κ = 0.05,
D = 0.34, and ε = 0.01.

III. POWER-LAW DISTRIBUTIONS OF THE RESOURCE
AND THE LINK WEIGHTS IN THE EQUILIBRIUM STATE

Figure 2 displays the typical behavior of the co-evolving
dynamics described by Eqs. (5) and (6). In this figure, the
size of a circle represents the amount of resource at a node.
Initial values are generated by a normal distribution with mean
μ = 1 and standard deviation σ = 0.1. The initial resource and
weight distribution are almost homogeneous. The underlying
fixed topology is given by a regular random graph, with
size N = 100 and degree k = 5. Other parameter values are
as follows: ε = 0.01, κ = 0.05, and D = 0.34. From the
figure, it can be observed that the resource initially becomes
concentrated in some nodes, which become hubs. During the

first interval, the resource accumulates at a few nodes near
the center of the graph, and the weights of the connections
between these resource-rich nodes are strengthened. As other
nodes develop into hubs, drastic changes occur in the resource
distribution. Nodes that were previously hubs lose their hub
status, and the links connecting them are weakened. After
these initial changes, the network repeatedly evolves in a
similar manner (see movie S1 in the Supplemental Material
for reference [64]).

We next focus on the statistical properties of a large
organized network (N = 16 384). The underlying topology
is given by an Erdös-Rényi random graph with 〈k〉 = 10.
Figure 3 shows the resource distribution and link weights
after a transient period, which take the form of a power

(a) (b) (c)

0

50

100

150

 0  25000  50000  75000  100000

R
es

ou
rc

e

Time

10-6

10-4

10-2

100

10-1 100 101 102 103

PD
F

Resource

x-1.99

10-12

10-8

10-4

100

104

10-1 101 103 105

PD
F

Weight

w-1.80

FIG. 3. (Color online) (a) Distribution of the resource quantity xi in the equilibrium state for a large network. Parameters are the same
as in Fig. 2, except that the underlying network is given by an Erdös-Rényi random graph (N = 16 384, 〈k〉 = 10). (b) Weight distribution.
(c) Time developments of the resource quantities for several selected nodes.
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FIG. 4. (Color online) Another model parameter with lower D leads to the organization of the homogeneous network. Parameters are the
same as in Figs. 2 and 3, except that D = 0.05. (a) Typical behavior of a small network. Changes of the resource quantities at nodes are difficult
to see in the scale of the graphs. (b) Time development of the resource at several sampled nodes in a large network (Erdös-Rényi random graph
with N = 16 384, 〈k〉 = 10). Values converge to different constants. (c) Resulting resource distribution in the organized network. (d) Same plot
as in (b), except that the underlying network is given by regular random graphs with k = 10.

law. In this case, the exponent of the resource distribution is
approximately −2 (for a cumulative distribution, the exponent
is −1). This result is consistent with Zipf’s law [9], an
empirical law that can be observed in the many resource
distributions in real-world networks [10–14]. The weight and
resource distribution have different exponents.

Although the resource quantities converge to a stationary
power-law distribution at the macroscopic level, they continue
to change with time at the microscopic level. Figure 3(c) shows
the temporal evolution of the resource quantities at several
nodes, where the quantities show irregular changes with time.

Using other parameters with a lower diffusion constant
D, the system converges to an alternative network type, in
which the microscopic resource dynamics are frozen, and
the resource distribution does not adhere to a power law
(Fig. 4). The resource variation between nodes originates from
variation in the underlying network. In fact, on the regular
random graph, the resource quantities converge to be the same
value at all nodes. Thus, this equilibrium state is intrinsically
homogeneous.

The emergence of these two types of network organizations
can be controlled by the model parameters. The system
particularly depends on κ and D, which determine two types
of resource flows:

xi(t + 1) − xi(t)

= κ − κxi(t) + D
∑
j∈Ni

[
wij (t)

sj (t)
xj (t) − wij (t)

si(t)
xi(t)

]
.

The diffusion constant D controls the resource flow via
the weighted network, based on the local interaction be-
tween nodes. The decay constant κ determines the global
redistribution of the resource. At each time step, each node
pays a percentage of the resource, κxi(t). The summation of
these percentages [=κ

∑
xi(t) = κN ] is equally redistributed

among the nodes, by the term +κ , and the balance between
the two distinct flows determines the resource distribution.
Figure 5 shows the exponent of the probability density distri-
butions of the resource and link weights on (D,κ) space, where
ε = 0.01. The underlying network is given by a Erdös-Rényi
random graph (N = 16 384, 〈k〉 = 10). In the colored area, the
distribution takes the form of a power law, whose exponents are
indicated by the color coding on the right. The distributions are
fitted by the method proposed in Ref. [15]. The dominant local
flow is controlled by diffusion constant D, and the resource
distribution has significant inequality among the nodes. In the
white area, the dominant distribution is global redistribution
by κ . This redistribution tends to homogenize the resource
distribution, which does not take the form of a power law [inset
in Fig. 5(a)]. Thus, the model exhibits two distinct types of
network organizations, without an intermediate state between
these regions. This finding implies that the transition between
homogeneous and heterogeneous resource distributions occurs
at the boundary between those areas. We will analyze this
transition in the next section.

To evaluate the unsteady microscopic dynamics observed
at the equilibrium state, we consider the rate of changes of the

012908-4



SELF-ORGANIZATION OF COMPLEX NETWORKS AS A . . . PHYSICAL REVIEW E 91, 012908 (2015)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5

D
ec

ay
 c

on
st

an
t  

κ

Diffusion constant D

 1

 1.5

 2

 2.5

D
ec

ay
 c

on
st

an
t  

κ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5

Diffusion constant D

 1

 1.5

 2

 2.5

(a)

(b)

FIG. 5. (Color) (a) Exponents of the power-law distributions of
the resource, γx , in (D,κ) space. In the colored area, the distribution
takes the form of a power law, whose exponents are indicated with the
color coding on the right. In the white area, the distribution does not
take the power law form. (b) Exponents of the power-law distributions
of the link weights, γw , in (D,κ) space.

resource given by

V (t) = 1

N

∑
i

|xi(t) − xi(t − 1)| (7)

and evaluate the time-averaged rate 〈V 〉 at the equilibrium
state. As shown in Fig. 6, the (D,κ) space is clearly divided into
an unsteady area (nonzero 〈V 〉) and a frozen area (zero 〈V 〉),
consistent with the regions in Fig. 5. This result implies that
the nearly homogeneous distribution of the resource is frozen
at the microscopic level and that the heterogeneous power-
law distribution of the resource has unsteady microscopic
dynamics.

Exponents γx and γw of the power-law distribution of the
resource and the link weights depend on the model parameters
(Fig. 5). In the parameter region of the power-law state (colored
region), a relationship exists between these exponents (Fig. 7).
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FIG. 6. (Color) Rate of change of the resource, measured by
log〈V 〉 in Eq. (7), plotted in (D,κ) space.

The red and blue points show the numerical results in the case
of an Erdös-Rényi random graph and a regular random graph,
respectively. The two lines indicate the theoretical prediction
under the extreme cases that the resource quantities at adjacent
nodes are uncorrelated and are equal, respectively. These
assumptions yield the following formulas for the exponents
γx,γw (see the Appendix):

γw = γx (Uncorrelated), (8)

γw = γx + 1

2
(Equal). (9)

Figure 7 indicates that the numerical data do not match with
the theoretical predictions in these two extreme cases. The
amounts of resource are not equal at the adjacent nodes, but
there is a correlation between the amounts.

The parameter ε controls the relaxation time scale of the
weights. Figure 8 plots the ε dependence of the exponent of the
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FIG. 7. (Color online) Relationship between the exponents of
resource γx and link weights γw . Points indicate the numerical results.
Lines show the theoretical predictions under two extreme conditions.
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power-law distribution of the resource at the equilibrium state.
This figure suggests that there is no significant dependence
on ε.

The underlying network topology is an implicit parameter
of the model. Theoretical studies often consider the all-to-all
coupling and the mean field approximation, which are useful
techniques for analyzing network dynamics in general [3,16].
Although the above results are robustly confirmed in several
underlying network topologies, surprisingly, the complete

graph (i.e., with all of nodes connected to other nodes) exhibits
an exceptional and qualitatively unique behavior. In the entire
range of possible parameters, the system always converges
to the completely homogenous state (i.e., xi = wij = 1). This
anomalous behavior seems to be structurally unstable, because
the completely homogeneous solution disappears from the un-
derlying network when the complete graph is slightly modified
(a few links are moved). We numerically confirm this unstable
behavior in the case of κ = 0 (with ε = 0.5,D = 1.0). On the
perfectly complete graph, the resource amounts at all nodes
converge to the same value [Fig. 9(a)]. However, on an almost
complete graph (0.1% of links are removed), a heterogeneous
resource distribution emerges [Fig. 9(b)] that asymptotically
converges to a power-law distribution. This distribution has
different properties from the power-law distribution in the case
of κ �= 0. The resource-poorest node, mini xi(t), converges to
zero resource, while the resource-richest node almost keeps its
value. Thus, the resource distribution broadens as time elapses.
For more details of the numerical and analytical results in this
case, see Ref. [7]. In the general case of κ �= 0, we numerically
obtain the phase diagram on (D,κ) space for various values of
the connection probability p in an Erdös-Rényi random graph
[Fig. 9(c)]. On the complete graph, there is no parameter region
of the heterogeneous resource distribution. As more links
are removed from the complete graph, the region becomes
broader. Based on these numerical results, we conjecture
that the underlying networks must be sparse in order for
a stationary power-law distribution to emerge, and that the
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FIG. 9. (Color) The model exhibits a structurally unstable behavior that only appears if the underlying network is given by the complete
graph. In the entire range of the possible parameters, the system always converges to the completely homogeneous state, i.e., xi = wij = 1.
(a) On the perfectly complete graph, the resource quantities at all nodes converge to the same value. (b) Slight modification of the complete
graph (0.1% of links are removed) destroys the resource configuration in (a), and a heterogeneous resource distribution emerges. (c) Exponents
γx of the power-law distributions of the resource in (D,κ) space for various connection probabilities p in an Erdös-Rényi random graph.
Parameters are the same as in Fig. 5, except for N = 1024.
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mean field approximation is not suitable for analysis of
this model.

IV. ANALYSIS OF THE MICROSCOPIC DYNAMICS
OF THE ORGANIZED NETWORK

In Sec. III we have numerically revealed that the model
exhibits two distinct types of network organizations depending
on the parameters: a static resource configuration with a
nearly homogeneous distribution and a configuration with
continuous microscopic changes and an asymptotic power-law
distribution. Next, we investigate the microscopic structure of
the organized network in terms of the resource distribution,
by analyzing the equilibrium state from the perspective of a
dynamical system.

First, we derive a fixed point for Eqs. (5) and (6). The
condition for a fixed point (x∗

i ,w
∗
ij ) is given by

x∗
i = 1

D
κ

(
1 − ∑

j

x∗
j aij∑

k x∗
k ajk

)
+ 1

,

(10)
w∗

ij = x∗
i x∗

j .

This condition seems to be complicated, but for a constant-
degree network (e.g., a regular random graph, ring, lattice, or
complete graph), we can find a solution to satisfy the condition.
Given that the degree,

∑
j aij , is constant for all i, there is a

completely homogeneous solution given by x∗
i = w∗

ij = 1 for
all nodes.

To identify the transition point from a homogeneous to a
heterogeneous distribution of the resource in (D,κ) space, we
focus on the case that the underlying topology is given by a
regular random graph and analyze the homogeneous solution.
The linear stability of the homogeneous solution is numerically
evaluated in a network of 100 nodes with k = 5 and ε = 0.1
(Fig. 10). In Fig. 10(a), the solution is stable in the blue region
and unstable in the red region. Figure 10(b) shows the results
obtained from the full simulation of the model equations.
In the blue region, the resource distribution converges to
a homogeneous distribution; in the red region, there is an
unequal distribution of resource at the nodes. The results of
the linear stability analysis are consistent with those of the
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FIG. 10. (Color) (a) Liner stability of the homogeneous solution,
i.e., xi = wij = 1 for all nodes, in the case of a regular random graph.
Solution is stable in the blue region and unstable in the red region.
(b) Stable (blue) and unstable (red) regions of the homogenous
solution obtained from the full simulation of the model equations.

full simulation. Thus, the destabilization of the homogeneous
solution determines the transition from a homogeneous to a
heterogeneous resource distribution.

When destabilization occurs, the system exhibits unsteady
microscopic dynamics with a stationary power-law distribu-
tion, as shown in the previous section. The dynamical system
of our model is completely deterministic. Therefore, it is
pertinent to ask what the underlying dynamics behind such
unsteady behaviors may be. We propose three candidates to
explain the numerical results. The first candidate is a very
long-term relaxation toward a fixed point. In this case, the
microscopic dynamical behavior is transient, although the
randomness of the connections makes the relaxation time very
long. The second candidate is a periodic state, which looks
irregular because of its long periodicity. The third candidate
is a chaotic state, in which the system intrinsically and
continuously exhibits irregular behavior. To identify which of
the above candidates is responsible for the observed behavior,
we numerically evaluate two measures: the total displacement
rate and the maximum Lyapunov exponent. We consider small
networks with 512 nodes (k = 5), although the degree of
freedom in the system is somewhat large (1792 dimensions).
The total displacement rate is given by |z(t + 1) − z(t)|, where
z(t) = {xi(t),wij (t)}. If this rate converges to zero after a long
time, then the system is settled in a fixed state. Otherwise, if
the maximum Lyapunov exponent is positive, then the state
is chaotic. In the remaining case, it seems to be periodic.
Figure 11 shows the typical behaviors of the above three
dynamics. The initial conditions determine which dynamics
emerge in the system. In Fig. 11(a), the system finally
settles on a fixed point after some transient period. The
total displacement rate converges to zero, and the maximum
Lyapunov exponent is negative. This is another fixed point
satisfying the condition (10), which is completely different
from the homogenous solution. In Fig. 11(b), the system
remains in a periodic state after a transient period. The dis-
placement rate does not converge to zero, but oscillates around
some finite value with a small amplitude. The maximum
Lyapunov exponent is nearly zero. In the middle graph, the
time developments of the resource quantities exhibit periodic
motions at some sampled nodes. In Fig. 11(c), the system is in
a chaotic state. The Lyapunov exponent is positive, and each
resource quantity exhibits irregular changes at the microscopic
level. Such differences in microscopic behavior originate
from the multistability of the system. Even if the network
has the same topology aij , the three types of microscopic
behavior are still observed depending on the initial conditions
of the resource and weights. Despite these distinct microscopic
behaviors, we find no significant statistical difference among
the resource distributions. These distributions take a form
of power law, in which the exponents are almost the same
in all three cases. In other words, these distinct states
have a similar, heterogeneous distribution of the resource at
the macroscopic level, whereas their microscopic behaviors
are definitely different. In the fixed states, the node ranking in
respect of the resource amount is frozen. On the other hand,
in the periodic and chaotic states, the ranking always changes
with time, keeping the characteristics of the heterogeneous
resource distribution. This result might suggest that the motion
of the system in the phase space is constrained on a certain
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FIG. 11. (Color online) Three types of microscopic behaviors seen in the case of a small network (N = 512, k=5, κ = 0.05, D = 0.4, and
ε = 0.01). (a) Fixed point with a long relaxation time. (b) Limit-cycle oscillation with a long periodic time. (c) Chaotic state. Graphs in the left
column depict the total displacement rate given by |z(t + 1) − z(t)|, where z(t) = {xi(t),wij (t)}, where λ is the maximum Lyapunov exponent.
Graph in the middle column shows the time development of the resource at several nodes. Graph in the right column indicates the cumulative
resource distribution.

hyperplane satisfying the heterogeneous resource distribution
in the macroscopic level. There are many fixed points, limit
cycles, and chaotic attractors on this hyperplane. Depending
on the initial state, the system converges either of them.

Given that the initial condition is randomly generated by
a normal distribution (μ = 1.0, σ = 0.25), we investigate
the percentages of the three states. Numerous distinct fixed
points and limit cycles are included within the percentages of
the fixed and periodic states. Figure 12 shows the results of
numerical simulations conducted until time step t = Ts and the
maximum Lyapunov exponent calculated using only the last
T0(=2 × 106) steps to determine the percentages of the three
states. In other words, we consider the time Ts − T0 to be the
transient period for convergence to a fixed or periodic states.
Figure 12(a) shows the dependence of the percentages of the
three states on Ts . As Ts increases, the percentage of the chaotic
state decreases, and the percentages of the fixed and periodic
states gradually increase. This result occurs because the system
chaotically evolves with time in the first steps and occasionally
is trapped at fixed points or limit cycles. Interestingly, the
profile of the percentages is almost stationary for a large Ts ,
and a certain percentage of the chaotic state exists. However,
this scenario does not rule out the possibility that the system
will go to a nonchaotic state after a very long-term relaxation.
Figure 12(b) shows the dependence on network size N for
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FIG. 12. (Color online) Percentages of the fixed, periodic, and
chaotic states. (a) Dependence on Ts for N = 512. (b) Dependence
on the network size N for Ts = 1.28 × 108.
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FIG. 13. (Color) Pattern formation on the regular lattices. (a) The
destabilization of the homogeneous solution under a regular, ring
topology induces a Turing-like wave of the resource distribution.
(b) A static spot pattern is observed on a two-dimensional lattice.
Other parameters are the same as in Fig. 3.

the largest Ts(=1.28 × 108). The percentage of the chaotic
state reaches 100% as the network size increases, which
indicates that the relaxation time to a fixed or periodic state
increases as the network size grows. This finding implies that
the microscopic behavior of a large-scale network is always
irregular.

The model shows some specific behaviors if the underlying
network is given by regular lattices, in which the homogeneous
solution also exists. On a one-dimensional ring topology,
the destabilization of the homogeneous solution induces a
Turing-like pattern at steady state [Fig. 13(a)]. A static
spot pattern is similar observed on a two-dimensional lattice
[Fig. 13(b)]. These Turing-like patterns are destroyed by
doping the regularity of the underlying network (e.g., by ran-
domly rewiring several links or setting nonuniform diffusion
parameters).

Finally, we summarize the microscopic behavior of the
model in the case of a regular random graph. There is a
homogeneous state where xi = wij = 1 for all nodes. The
stability of this solution determines the transition between the
homogeneous and heterogeneous networks. In the unstable
region, there are several types of distinct behaviors (i.e., fixed
point, periodic, and chaotic states). However, despite these
different microscopic behaviors, the stationary power-law
distribution of the resource is almost qualitatively the same.
The system has numerous distinct fixed points and periodic
states, and the relaxation times toward them are extremely

long in a large-scale network. Consequently, the system always
behaves chaotically and is occasionally trapped at a fixed point
or periodic state after a long transient period.

V. DISCUSSION

In this study, we have introduced a simple model of the co-
evolving dynamics of real-world networks, which combines
the dynamics of random walkers and link weights, driven by
the amount of resource carried by the walkers. Numerical
studies of this model have revealed that, under suitable
conditions, the co-evolving dynamics organize stationary
power-law distributions of the resource and link weights,
in which the resource quantity at each node continues to
change with time at the microscopic level. The linear stability
of the homogeneous solution for a regular random graph
indicates the boundary of the parameter region, determining
whether a power-law distribution can emerge for the resource.
Furthermore, an analysis of the maximum Lyapunov exponent
on the continuous microscopic dynamics has revealed that
this system exhibits multistability, including numerous fixed
points, limit cycles, and chaotic states.

In the asymptotic state, the resource quantity at each node
is essentially equivalent to the PageRank centrality of the
node. Under the condition

∑
i xi = N (as in our simulations),

Eq. (5) can be rewritten by

�x(t) = [κG + DT (t) + (1 − κ − D)I] x(t),

where x(t) = {x1(t),x2(t), . . . ,xN (t)},Gij = 1/N,Tij (t) =
wij (t)/sj (t) and I is the identity matrix. If κ + D = 1,
then this equation gives the well-known map iteration
that is used to evaluate the PageRank. The parameter κ

corresponds to the dumping factor, which controls the global
teleportation of walkers over the entire network. In this sense,
the proposed model represents the co-evolving dynamics
between the node’s centrality measured by the PageRank and
the link weights. This finding will evoke future studies of the
co-evolving dynamics using another centrality of the node,
such as closeness or between centrality.

Historically, the concept of co-evolving network dynamics
has primarily been discussed within the neuroscience field
[17]. In neural networks, synapses connect the neurons. Their
efficiency, often referred to as the synaptic weight, drastically
changes depending on neuronal activity. As a fundamental
mechanism of memory and learning, synaptic plasticity has
been studied experimentally and theoretically [18,19]. Insights
from these studies have led to the cybernetic system concept,
in which the structure of the system is adaptively modified
by the system itself [20,21]. Recently, researchers in network
science have focused on the adaptivity of real-world networks.
As reviewed in Refs. [5,6], many real-world networks are
adaptive, with connections that continuously change according
to the states of the nodes. We can classify previous studies on
this subject among diverse fields into three groups, according
to how the states of the nodes are described. In class I, the
node has a discrete state. In particular, the state is binary,
often represented by a spin. This description is universal, and
most recent studies on adaptive networks, including those on
opinion dynamics [22–27], epidemic spreading [28], game
theory [29–32], and neural network of binary neurons [33],
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are categorized into this class. Class II is “phase,” which
represents the timing of periodic motion. Recent studies have
revealed that the synaptic plasticity depends on the timing of
neuronal activity [34–36], igniting the development of studies
of spiking neural networks [37–49]. This class also includes the
continuous state of a fine-grained discrete state (e.g., opinion
dynamics which consider the spectrum of people’s opinions
[50,51]). Class III represents an “amount” of something, which
is continuous and typically ranges in [0,∞). Our model can
be categorized in this class, with the quantity being referred to
as a “resource.” Previous studies of reinforced random walks
[52–54], reaction-diffusion dynamics [55], and gene regulation
network [56,57] are categorized in this class. Another example
is slime molds that form a network of tubes interconnecting
the food sources. The tube thickness adaptively changes,
depending on the flow of protoplasm [58].

The dynamics of real-world networks, which correspond
to changes in the interactions in the systems, can be divided
into two steps. The first step is a topological change, which
creates new interactions or deletes existing interactions from
the system. Little information is currently available on this
coevolutionary elementary process in real-world networks,
expect for a few studies on Twitter data [59]. The second
step is a change in the link weights, which modifies the
interaction strength. Although knowledge about this process is
also limited, studies of the neural networks and autocatalytic
chemical reaction systems can provide some clues. Based
on these considerations, we have neglected the first step and
considered only the second step in our model. The underlying
topology aij is assumed to be static. The weight wij (t) of the
existing links changes according to Eq. (2), which is similar
to the law of mass action in chemical reactions or the Hebbian
rule in neural networks. Interestingly, this simple equation can
generate rich behaviors of the dynamical system with large
degrees of freedom. Assuming a fixed underlying topology
is justified if the topological change of the interactions is
very slow, or if the mechanisms governing the two kinds
of network dynamics are intrinsically different and activated
in different periods. For example, in autocatalytic chemical
reaction systems, the reaction rates of proteins (i.e., the link
weights) can be drastically controlled by their own products,
whereas the path of possible reactions (i.e., underlying network
topology) is constant. In the neural networks, the synaptic
plasticity of the network weights and synaptogenesis for the
synaptic formation are believed to be regulated by different
factors. The model could also be applied to economic and
traffic networks. In business relationships, the resource is
money and the interactions are trades between companies.
A network based on Japanese economic trades was studied
by a model similar to ours [60]. The potential application of
this model to traffic networks, especially networks of traffic
on the Internet, would be important for the understanding of
the interplay between the network-reformation and the the
PageRank, which is used to evaluate the number of page views
on the web.

In Secs. III and IV, we have found that, under suitable
conditions, the co-evolving dynamics lead to the organization
of stationary power-law distributions of the resource and link
weights. This finding is intuitively explained by the positive
feedback between the resource amount and the inward weights.

As the resource is concentrated into nodes with thicker inward
links, the link weights are strengthened by the concentrated
resource. This scenario can provide another mechanism of
the “rich-get-richer” law, which can be implemented by a
dynamical system without knowing the global information
over the network, such as the degree distribution required in
the previous model [61].

The emergence of the power-law distribution of the resource
has been numerically and theoretically studied, especially in
the case of the regular random graph. We find two distinct
regions in (κ,D) space: the homogeneous resource distribution
with a frozen state, and the power-law resource distribution
with an unsteady microscopic state. There is no intermediate
state between these extreme situations. Considering economic
networks as an example, κ controls the equal redistribution
of money, similar to a tax; and D controls the flow of money
via trades. Our results imply that it is a very difficult task
to avoid the extreme situations and realize a moderate state
asymptotically by controlling these parameters.

We have studied the unsteady microscopic dynamics of
the organized network with stationary distributions from the
perspective of a deterministic dynamical system. This system
exhibits multistability including many fixed points, limit
cycles, and chaotic states. Despite these different microscopic
behaviors, the stationary power-law distribution of the resource
is robustly realized. For a small network, the system tends to
be trapped at fixed points, implying the permanent oligopoly
of the resource over the network. For a large network, the
dynamical system almost always exhibits chaotic behavior,
in which the current monopoly of the resource will lose
its status and be replaced by the next winners. Microscopic
dynamics with stationary power-law distributions are observed
in real-world networks, such as city populations [62] and US
airport networks [63]. Thus, the intrinsic interplay between the
states of the nodes and the network reformation is essential for
the dynamic aspects of the vicissitudes that are often observed
in changing real-world networks.
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APPENDIX: RELATIONSHIP BETWEEN SCALING
EXPONENTS OF THE RESOURCE AND THE LINK

WEIGHTS

We derive the relationship between the exponents γx,γw of
the power-law distribution of the resource and the link weights,
under two strong assumptions regarding the resource quantities
at the adjacent nodes, xi and xj .

First, we assume that there is no correlation between the
resource quantities at adjacent nodes. According to Eq. (2), the
link weights wij will converge to xixj . Thus, we approximate
the weight by

wij = xixj . (A1)
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The amounts of the resource, xi,xj , obey the power-law
distribution with exponents γx : Px(x ′) ∝ x ′−γx . Therefore, the
distribution of the link weight wij can be derived according
to Eq. (A1), for the two independent random variables xi and
xj . This problem requires that we transform random variables
from two independent variables X and Y to new variables
W = XY and Z = Y . The joint distribution PX,Y and PW,Z

satisfies the following equation:

PW,Z(w,z) dw dz = PX(x)PY (y) dx dy

= PX(w/z)PY (z)

∣∣∣∣∣
dx
dw

dx
dz

dy

dw

dy

dz

∣∣∣∣∣ dw dz

= PX(w/z)PY (z)
1

z
dw dz.

Therefore, the distribution PW (w) can be expressed as

PW (w) =
∫

PX(w/z)PY (z)
1

z
dz.

Applying the result to the power-law distribution PX(x) =
PY (x) ∝ x−γx , we obtain

PW (w) ∝
∫ (

w

z

)−γx

z−γx
1

z
dz ∝ w−γx .

In the above derivation, we assume that the range of x is
bounded by some cutoff. Therefore, γw = γx .

Next, we assume that the correlation between the amounts
of resource at adjacent nodes equals 1. In other words, xi =
xj . Thus, Eq. (A1) can be written as

wij = xixj = x2
i ,

and the weight distribution PW can be expressed by the
resource distribution PX. As a result,

PW (w) = 1

2
√

w
PX(

√
w) ∝ w− γx+1

2 .

Therefore, γw = γx+1
2 .
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