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Self-organized network of phase oscillators coupled by activity-dependent interactions
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We investigate a network of coupled phase oscillators whose interactions evolve dynamically depending on
the relative phases between the oscillators. We found that this coevolving dynamical system robustly yields three
basic states of collective behavior with their self-organized interactions. The first is the two-cluster state, in
which the oscillators are organized into two synchronized groups. The second is the coherent state, in which the
oscillators are arranged sequentially in time. The third is the chaotic state, in which the relative phases between
oscillators and their coupling weights are chaotically shuffled. Furthermore, we demonstrate that self-assembled
multiclusters can be designed by controlling the weight dynamics. Note that the phase patterns of the oscillators
and the weighted network of interactions between them are simultaneously organized through this coevolving
dynamics. We expect that these results will provide new insight into self-assembly mechanisms by which the
collective behavior of a rhythmic system emerges as a result of the dynamics of adaptive interactions.
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I. INTRODUCTION

Interaction is a key concept in statistical physics, and it
essentially determines the emergent collective behavior of
coupled dynamical systems. In many real-world systems, the
interactions have large-scale, heterogeneous, and complex
structures, and thus are suitable to be represented by the term
“network.” For example, many biological and social systems
consist of a number of active elements that are structured in a
complex network to be functional as a whole system. Recently,
researchers have intensively investigated the statistical proper-
ties of real-world networks and revealed that the networks are
not random but rather structured statistically [1–3]. However,
little is known about the origin of these elaborate structures of
networks. For example, how are the interactions of a network
constructed to be functional as a whole system? We wish to
elucidate the mechanism that allows the organized structures
of networks to emerge as a natural process of their systems.

We hypothesize that the network structure of interactions in
a system is organized depending on the activity of the system,
rather than being completely predetermined. The networks
in real-world systems are not static, but change over time.
They adaptively reorganize in response to the activity of the
systems. For example, recent neurophysiological experiments
revealed that the change in synaptic connections depends
on the relative timings between neuronal activities [4–6].
It is believed that this synaptic plasticity allows the real
neuronal network to acquire a high capability of flexible
brain functions. A chemical system of autocatalytic reactions
is another example, in which the reaction rates of chemical
interactions change dynamically depending on the reaction
products of the system itself [7,8]. Many biological and social
networks show similar activity-dependent plasticity related to
functions of their systems [9–11].

Biological and social systems usually have no explicit
system administrator who manages the interactions in the
system, so the idea of self-organization of the network
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structure appears to be reasonable. However, the actual process
of self-organization is still poorly understood. To examine
the process, in this study we consider a dynamical system
coupled by activity-dependent interactions and explore how
the interactions are organized as a result of the asymptotic
behavior of the dynamical system.

We studied a network of phase oscillators coupled by
activity-dependent interactions, which was introduced in our
previous paper [12]. In the model, together with the dynamics
of the coupled oscillators, the strengths of the interactions
evolve simultaneously depending on the relative timing be-
tween the oscillators, like the observed neural plasticity [4–6]
(Sec. II). Through these coevolving dynamics, the relative
phases of the oscillators and their interactions are coordinated
as a result of the behavior of the dynamical system. In Sec. III,
we describe asymptotic behaviors of the coevolving dynamical
system and show that this system exhibits three distinct types
of asymptotic behaviors: a two-cluster state, a coherent state,
and a chaotic state. We discuss the robust emergence of these
three states under various conditions in Sec. IV. Finally, we
demonstrate that self-organized multiclusters can be realized
by designing the dynamics of the coupling weights (Sec. V).
Section VI summarizes our conclusions.

II. A PHASE OSCILLATOR MODEL COUPLED
BY ACTIVITY-DEPENDENT INTERACTIONS

We first consider the following equation of a coupled
dynamical system:

dxi

dt
= F(xi) +

∑
j

fij (xi ,xj ),

where xi denotes the state of the node i of the network. The
first term describes the intrinsic dynamics at the nodes, and
the second term is the coupling term with the other nodes. In
this study, we consider a limit-cycle oscillator as the intrinsic
dynamics F for the following reasons: limit-cycle oscillation
is widely observed in real dissipative systems, and coupled
limit-cycle systems often generate a rich variety of collective
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behavior. Furthermore, limit-cycle oscillation is structurally
stable, and it can be described by a simple model of a phase
oscillator that is mathematically tractable. Therefore, it is
reasonable to consider a limit-cycle oscillator as the intrinsic
dynamics at the nodes. Using a standard reduction technique
[13–15], the coupled limit-cycle system is described by the
following equation:

dφi

dt
= ωi + 1

N

N∑
j

kij�(φi − φj ), (1)

where φi denotes the phase of the limit-cycle oscillation
at the ith node of the network (i = 1, . . . ,N), ωi is its
natural frequency, and kij denotes the coupling weight of the
connection from the j th to the ith oscillator. The coupling
function �(φ) here is assumed to take the simple form
�(φ) = − sin(φ + α), because this first Fourier term is often
dominant in many biological and chemical oscillators. Under
suitable conditions, the parameter α can be regarded as the
phase difference induced by a short transmission delay of the
coupling [16]. For example, the parameter α could represent
an axonal transmission delay in the synaptic connection of
nerve systems or a delay in the reaction path in biochemical
systems.

Next, we introduce the dynamics of the coupling weights
kij due to the activity-dependent plasticity of the weights. We
assume that the plasticity depends on pure local information
over a connection, not on nonlocal information over a network,
such as the total number of links across a node and a global
order parameter over the network. In other words, the weight
dynamics only depends on the phases of the end-point nodes.
Due to the translational symmetry of φi , the dependency on
the absolute values of the phases is neglected. Consequently,
we denote the dynamics of the coupling weights kij as follows:

dkij

dt
= ε�(φi − φj ), |kij | � 1. (2)

In this equation, the plasticity of the network is governed by
a function �(φ), which determines how the coupling weight
depends on the relative timing of the oscillators. Thus, we
call it a plasticity function. The time scale of this dynamics,
represented by ε−1, is much longer than the time scale of
the dynamics of the oscillators, i.e., ε � 1, because the
evolution of the connections is usually slower than that of
the oscillators in real-world systems. The bounded condition
|kij | � 1 implies that if kij has a value outside the interval
[−1,1], it is immediately set to the appropriate bounded value
(−1 or 1). This rule is reasonable because the weight cannot
grow indefinitely. An alternative bounded condition can be
implemented by adding a nonlinear term,

dkij

dt
= ε

[
�(φi − φj ) − k

2μ+1
ij

]
,

where μ is an integer (μ � 0). We numerically confirmed
that for large μ, this alternative implementation method gives
qualitatively the same results.

In general, the plasticity function �(φ) is a 2π -periodic
function. Taking only the lowest-order Fourier mode into ac-
count for simplicity, we obtain the form �(φ) = − sin(φ + β).
Under this condition, the characteristic of plasticity can
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FIG. 1. The evolution of weights is determined by the plasticity
function �(φ) parametrized by β. The characteristic of the plasticity
changes continuously depending on the parameter β.

be controlled by a single parameter β, as illustrated in
Fig. 1. If β ∼ −π

2 , then the function �(φ) is similar to
cos(φ). In this case, for a pair of oscillators with similar
phases, �(φ) gives a positive value, so the weight between
them will be strengthened according to Eq. (2). In contrast,
the weights between the oscillators of the different phases
will be weakened. This characteristic of the plasticity is
qualitatively similar to that of the Hebbian learning rule used in
neuroscience [17]. We refer to this characteristic of plasticity
as a Hebbian-like rule. If β ∼ 0, then �(φ) ∼ − sin(φ). The
sign of the function is sensitive to the temporal order of
the oscillators. When oscillator i precedes oscillator j , the
coupling weight from oscillator i to j is strengthened and
the opposite weight is weakened. Therefore, it will encode
a causal relation of activity of the oscillators into weights.
This kind of plasticity has been observed in the cortex of
the brain as a typical manner of spike-timing-dependent
plasticity (STDP) [4–6]. We refer to this type of plasticity
as a causal rule.1 If β ∼ π

2 , then �(φ) ∼ − cos(φ), which
has the opposite effect of the Hebbian-like rule. We refer to
this as an anti-Hebbian-like rule. Although we have explained
three typical characteristics of plasticity, we never intended
to restrict the plasticity rules. In this proposed model, the
characteristic of plasticity is continuously changed by varying
the parameter β, which enables us to investigate the coevolving
dynamics in a systematic manner.

Taken together with the coupled dynamics of oscillators
and the activity-dependent plasticity of the weights, the model
proposed here is given by

dφi

dt
= 1 − 1

N

∑
j

kij sin(φi − φj + α),

(3)
dkij

dt
= −ε sin(φi − φj + β), |kij | � 1,

where the natural frequencies are assumed to be identical,
and we choose ωi = 1, without a loss of generality. We will
discuss a case of various natural frequencies in Sec. IV A.

1This causal synaptic learning rule was referred to as a spike-timing-
dependent plasticity (STDP) rule in our previous paper [12], because
this rule is similar to the STDP seen in the cortex [4]. The STDP
rules, however, vary depending on the area of the brain and species,
and some of them are not causal [6]. Hence, we do not refer it as a
STDP rule in this paper.
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FIG. 2. (Color) (a) Phase diagram of the
asymptotic states. (b) Phase patterns of the
states. The graphs depict time developments
of φi(t) using a color gradient (t = 1900–
2000). The index i of oscillators is arranged
in order of increasing phase φi at a previous
time (t = 1000). The number of oscillators
N = 200. ε = 0.005.

In the following numerical simulations, we investigate the
asymptotic state of this dynamical system, given a random
initial state, where the phases φi are chosen from a uniform
distribution in [0,2π ) and the weights are chosen from a
uniform distribution in [−1,1]. This system is characterized
mainly by the two parameters α and β.2 Hence, in later
sections, we investigate the dependence of the asymptotic state
of this model on these parameters.

III. EMERGENCE OF THREE TYPICAL ASYMPTOTIC
STATES FROM THE COEVOLVING DYNAMICS

In this section, we show that the proposed model exhibits
three distinct asymptotic states that are structurally stable
against perturbations. There are two distinct types of ordered
states (two-cluster and coherent) and one disordered state
(chaotic). Figure 2 shows a phase diagram of these states and
their typical phase patterns of the coupled oscillators. In the
following subsections, we will explain the properties of each
of these states.

A. Two-cluster state with synchronized oscillator groups

First, we explain the two-cluster state, in which the
oscillators are organized into two clusters, as shown in
Fig. 2(b). Figure 3(a) shows the properties of this state. The left
graph displays the time development of the order parameters
(Rm = | 1

N

∑
j eimφj |, with m = 1,2), and a normalized rate of

change of the weights averaged over all connections given by


K(t) = 1

N (N − 1)

∑
i �=j

|kij (t) − kij (t − 
)|



,

where a sampling interval 
 ∼ 2π
ω

� 1
ε
. In this figure, the

second order parameter R2 converges to 1 and R1 is kept to
almost zero. This implies that the oscillators are organized
into two synchronized groups with an antiphase relationship.
The formation of the two groups is also confirmed in the

2Note that this system is invariant under the translation (α,β,φi) →
(−α,β + π, − φi) and (α,β,φi) → (α + π,β + π,φi). Due to this
symmetry, it is sufficient to check the region α ∈ [0,π/2) and
β ∈ [−π,π ).

middle graph in Fig. 3(a), which depicts the phase distribution
after the transient period. We can see two significant peaks
corresponding to the synchronized clusters in the phase
distribution. Furthermore, the rate 
K(t) converges to zero,
which indicates that the weights become frozen. The right
graph displays the weight matrix kij (t) in the frozen state, in
which the indices i,j are arranged in the order of increasing
phase φi(t) at the same time. From this graph, we can see that
the reciprocal connections within the same cluster are in the
state kij = kji = 1, whereas those between different clusters
are in the state kij = kji = −1.

The formation of the two clusters is intuitively under-
stood by the Hebbian-like characteristic of the plasticity
function �(φ). In the region β ∈ (−π,0), the function �(φ)
induces the increase (decrease) of the weight kij between
in-phase (antiphase) oscillators. The increase (decrease) of
the weight enhances the in-phase (antiphase) relationship
of the oscillators. This is a kind of positive feedback of
synchronization. In other words, the evolution of the weights
follows a like-and-like (different-and-different) rule. Due to
this characteristic of plasticity, a two-oscillator system in
which a pair of oscillators is coupled reciprocally has two
stable solutions in the region β ∈ (−π,0) (see Appendix
A). One is an in-phase solution, k12 = k21 = 1,
φ = 0, and
the other is an antiphase solution, k12 = k21 = −1,
φ =
π . For the N -oscillators system, any pair of oscillators
satisfies either of these solutions in the two-cluster state.
Therefore, the formation of the two-cluster state can be
intuitively explained as follows: the like-and-like rule induces
the formation of synchronized groups and the different-and-
different rule separates the two groups into an antiphase
relationship.

The ratio of the populations between the two clusters
generally depends on the initial condition. In the graph, the
size of the two clusters is almost equal since the initial
phases were chosen uniformly from the range [0,2π ). If the
initial phases are selected from a limited range, then the
populations of the clusters are quite different. For example,
if all oscillators almost synchronize at the initial time, then
a single synchronized cluster emerges, which means that
the ratio of populations between two clusters is 1:0. Thus,
the formation of a single cluster is a specified case of the
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FIG. 3. (Color) Properties of the three
asymptotic states. (Left) Order parameters
R1,R2 and a normalized rate of change of
the weights 
K . (Middle) Population of
phases and autocorrelations of the relative
phase relation. (Right) Weight matrix kij ,
in which the indices i,j are arranged in the
order of increasing phase. Parameter values
are the same as in Fig. 2(b).

two-cluster state, and the initial condition determines whether
two clusters or a single cluster emerges [18].

B. Coherent state with a fixed phase relationship

The other ordered state is the coherent state, in which the
oscillators are arranged in a sequence maintaining a fixed phase
relation. This state has different properties from the two-cluster
state, as shown in Fig. 3(b). The distribution of phases (the
middle graph) is almost uniform and has no significant peak.
The rate of change of weights 
K , however, converges to
zero, which implies that the system settles into a steady state.
To reveal the property of this steady state, we measured the
autocorrelation function C(τ ) = 〈| 1

N

∑
j eiφj (t)e−iφj (t−τ )|〉,

shown in the inset of the middle graph. From the graph, we
can see that the autocorrelation does not decay and remains
equal to unity. This means that relative phase relations among
the oscillators are maintained in this steady state, that is, the
oscillators are arranged in a sequence. Therefore, we refer to
it as a coherent state.

The emergence of the coherent state is intuitively explained
by the characteristic of the plasticity function �(φ). Around

β ∼ 0, �(φ) ∼ − sin(φ), which encodes the causal relation of
activity of the oscillators, because the sign of �(φ) depends
on the temporal order of the oscillators. According to this
causal rule of plasticity, a type of feed-forwarding network is
organized, as shown in the right graph of Fig. 3(b). If oscillator
i precedes oscillator j in the sequence, then the connection
from i to j converges to the positive weight, kji = 1, and
the opposite connection from j to i becomes the negative
weight, kij = −1. More precisely, the weights satisfy the con-
dition kij = sgn [− sin(φi − φj + β)]. These feed-forwarding
connections maintain the temporal order of oscillators.

1. Linear stability

Next, we analyze the linear stability of the coherent state
against perturbations of the phases. In the limit ε → 0, the time
scale of the weight dynamics, represented by ε−1, is slower
than that of the coupled oscillators, and we only consider the
stability of the phase pattern φ∗

i with the fixed weights, k∗
ij =

sgn [− sin(φ∗
i − φ∗

j + β)]. If the phase pattern φ∗
i is stable,

then the weights are also kept at the fixed values.
The eigenvalues of the coherent state are derived as

Reλk =
{

− 2
π

sin(α − β) (k is odd),

− 2
π

sin(α − β) − 2
π(k2−1) [cos kβ sin(α − β) + k sin kβ cos(α − β)] (k is even),

where k is the wave number of the deviation from the coherent
state (see Appendix B).

The first eigenvalue, λ0 = 0, corresponds to the uniform
shift of the phases. Therefore, the stable region of the coherent
state is determined by

max
k�1

Reλk < 0.

The phase diagram in Fig. 2(a) shows the stable region of the
coherent state in the (α,β) plane. Similarly, the stable region
of the two-cluster state is obtained (see Appendix B).

In order to examine how the coherent state is destabilized,
we depict the boundaries between the coherent state and
other states in Fig. 4. At the boundary between the coherent
and the two-cluster states, the eigenvalue λ2 becomes pos-
itive [Fig. 4(a)]. This boundary is expressed in the explicit
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form

λ2 = 0 ⇔ α = sin−1

⎛
⎝

√
8(sin β)6

23 + 12 cos 2β − 3 cos 4β

⎞
⎠ .

Figure 4(b) shows the time development of the phase pop-
ulation after destabilization of the coherent state induced by
a sudden change in the value of β as indicated by an arrow
in Fig. 4(a). This graph shows that when the uniform phase
distribution in the coherent state is disturbed, a deviation with
the wave number k = 2 begins to develop, and finally the two
clusters appear. Next, we examine the boundary of the chaotic
states [Fig. 4(c)]. Figure 4(f) shows several lines of λk = 0. The
coherent state becomes unstable when one of the eigenvalues
λk is positive. It depends on the parameter α whether the wave
number k becomes positive at first. We present two examples
in Figs. 4(d) and 4(e). At α = 0.4π (0.3π ), the eigenvalue λ4
(λ6) first becomes positive. We can see that the corresponding
wave arises in the phase population as the time elapses. As a
result, the boundary between the coherent and the chaotic states

consists of pieces of the lines of λk = 0 (k = 4,6,8, . . . ,∞).
This result supports the emergence of the chaotic state.

2. Bistability

The phase diagram shown in Fig. 2(a) indicates that there
is a bistable region between the two-cluster and the coherent
states. The initial condition determines which of these states
is realized. In an unbiased initial condition, where the phases
φi are chosen from a uniform distribution in [0,2π ) and the
weights are chosen from a uniform distribution in [−1,1], the
system appears to be in the coherent state for α > −β and in
the two-cluster state elsewhere. It should be noted that once the
system is settled in either of these states, a transition between
the states never occurs, because these asymptotic states are
stable.

Moreover, we can consider a combination of coherent and
two-cluster states, in which several synchronized groups are
arranged in a sequence. Considering M groups of synchro-
nized oscillators, φm

i = φm (m = 1,2, . . . ,M), any pairs of
oscillators within the groups satisfy the in-phase solution,
kij = kji = 1,
φ = 0, as in the two-cluster state. Thus, each

066109-5



TAKAAKI AOKI AND TOSHIO AOYAGI PHYSICAL REVIEW E 84, 066109 (2011)

 0

 100

 200

 3900  3925  3950

 0

 100

 200

 0  100  200

J

I

-1

-0.5

 0

 0.5

 1

(a)

(c) (d)

(b)

 0

 0.5

 1

 0  1000 2000 3000 4000

R1
R2
R3
R4

 0

 0.5

 1

0 π 2 π

O
sc

ill
at

or
s

Time

Time

φ
P

op
ul

at
io

n 

O
rd

er
 p

ar
am

et
er

s

FIG. 5. (Color) Emergence of four clusters by a combination of
the two-cluster and coherent states. α = 0.4π , β = −0.3π . (a) Time
developments of φi(t). (b) Phase distribution at t = 4000. (c) Time
developments of order parameters, R1,R2,R3,R4. (d) Weight matrix
kij at t = 4000.

group can be regarded as a single bundled oscillator and we
obtain the same equation for the bundled oscillators φm as
in Eq. (3), unless the coupling weights between the groups
are bundled into the total value. Then, there is a solution to
the coherent state for the equation of the bundled oscillators.
This combination of both states looks like an M-cluster
state. Actually, we present an example of a four-cluster state
observed in the bistable region in Fig. 5. Note that the initial
conditions generating this M-cluster state are somewhat rare
and the perfect M cluster is not usually observed from random
initial conditions. Under random initial conditions, instead of
the emergence of the perfect M-cluster state, we can observe
several small-sized clusters in the coherent state, while most
of oscillators are separated with distinct phases. In Fig. 3(b),
the phase distribution is not completely flat, which indicates
the existence of small-sized clusters.

C. Emergence of the chaotic state by self-breaking
of the time-scale separation in the coevolving dynamics

In the other parameter region, where both the two-cluster
and the coherent states are unstable, the system exhibits chaotic
behavior. As shown in Fig. 3(c), the rate of change of weights

K does not converge to zero and the autocorrelation C(τ )
quickly decays to zero. The population of the phases, shown in
the middle graph, has no particular peak. No distinct structure
in the weight matrix kij is observed. This indicates that the
system does not settle into a fixed state. The weights and the
relative phase relations continue to change in time through
the coevolving dynamics.

To investigate the property of this disordered behavior, we
consider the two-oscillator system (see Appendix A). This

system is given by an equation of three variables 
φ,k12,k21

as
d
φ

dt
= −k12 sin(
φ + α) + k21 sin(−
φ + α),

(4)
dk12

dt
= −ε sin(
φ + β),

dk21

dt
= −ε sin(−
φ + β).

In the limit ε → 0, using this adiabatic approximation, we
obtain the reduced equation

dk12

dt
= −ε sin[
φ∗(k12,k21) + β],

(5)
dk21

dt
= −ε sin[−
φ∗(k12,k21) + β],

where the dynamics are described only by the weights k12,k21.
Figure 6(a) shows a phase portrait of the system described by
Eq. (5) in the (k12,k21) plane. In the graph, there is a global
attractor at k12 = k21 = 0. At this fixed point, however, the
adiabatic approximation does not hold even in the limit ε → 0.
As both weights approach zero, the convergence of the variable

φ to the equilibrium 
φ∗ slows down significantly, and
eventually becomes of the same order as that for the dynamics
of the weights. This implies that the time-scale separation
between the dynamics of the relative phase and that of the
weights breaks as a result of their own dynamics. Researchers
have often discussed the time-scale separation between the
network reformation and activity at the nodes, and expected
that the breaking of the time-scale separation would bring a
remarkable behavior in adaptive networks [19–21]. Our result
provides an interesting example. The breaking of the time-
scale separation is induced by its own dynamics. Furthermore,
after the time-scale separation is broken, a chaotic behavior
emerges. Figure 6(b) displays a typical trajectory of the system
without the adiabatic approximation given in Eq. (4). In
Figs. 6(b) and 6(c), we can see two vertices around 
φ = ±π

2
and a number of paths between these vertices. When a point
of the state of this dynamical system sinks in either of the
vertices, it slowly changes the weights around the center of
the vertex, and then it suddenly jumps into the other vertex
and repeats. We found that the largest Lyapunov exponent
is positive, as shown in Fig. 6(d). Therefore, we refer to
this state as a chaotic state. The N -oscillators system also
has positive Lyapunov exponents. The number of positive
Lyapunov exponents is proportional to the number of degrees
of freedom of the dynamical system, N2 [Fig. 6(e)].

The emergence of such a disordered state is intuitively
explained by the anti-Hebbian-like characteristic of the plas-
ticity function �(φ). In the chaotic state, �(φ) weakens the
connections between the pair of synchronized oscillators, and
eventually the oscillators become desynchronized. This means
that the evolution of the weights destroys the structure of the
connections that realize the current relations among oscillators.
Therefore, the disordered state is intuitively understood by the
following process: (i) The phase pattern causes the structure
of the weighted network to change. (ii) The change undergone
by the weights causes a new phase pattern to appear. (iii)
The change of the phase pattern results in further modulation
of the weights of the network. (iv) This process repeats. Note
that in the actual process, the oscillators and the weights evolve
simultaneously, not in a step-by-step manner.
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FIG. 6. (Color online) A chaotic state caused by the coevolving dynamics of weights and oscillators. (a) Phase portraits of the system in
the (k12,k21) plane obtained using an adiabatic approximation in the chaotic state. β = 0.7π and α = 0.1π . (b) A trajectory in the chaotic state
of the two-oscillator system, with α = 0.05π , β = 0.65π , and ε = 0.005. (c) The same trajectory of (b) projected on the (
φ,k12 + k21) plane.
(d) Lyapunov exponents as functions of ε. The inset displays a log-log plot, with a fitting curve satisfying λ ∝ ε1/2. The parameters are the
same as in (b). (e) The number of positive Lyapunov exponents as a function of the number of degrees of freedom of the system, N2. β = 0.7π

and α = 0.2π .

IV. ROBUST EMERGENCE OF THE THREE TYPES
OF ASYMPTOTIC STATES

Next, we discuss the robust emergence of the three states
mentioned in the previous section.

A. Effects of the variations in the frequencies of oscillators

In the previous sections, we assumed that all oscillators
are identical. However, this is unnatural, because practical
oscillators have differing frequencies. Here we consider
whether the observed states still emerge with nonidentical
oscillators even from random initial weights and phases. The
frequency of the oscillator, ωi , is generated from a normal
distribution with a deviation σω. The initial conditions for kij

and φi are chosen randomly from a uniform distribution on
[−1,1] and [0,2π ), respectively.

Figure 7 shows three measures as a function of β for several
σω: the second order parameter R̄2, the long-time correlation
C̄ [= C(τ ∗), τ ∗ = 200], and the rate of change of weights 
K .
These measures denoted by a diacritical mark X̄ are evaluated
by averaging over a long period after removing a transient
period. Each data point in the figure is estimated from 40
trials with various initial conditions and various sets of natural
frequencies of the oscillators. As mentioned in the previous
sections, the second order parameter R̄2 converges to 1 in
the two-cluster state. If R̄2 converges to 0, but the long-time

correlation C̄ is still 1, then the system is in the coherent state.
When the rate of change of weights 
K does not converge
to zero, the system is in the disordered (chaotic) state. In the
figure, the profile of these measures indicates that the system
converges to one of the three states depending on β, as in
the case of identical oscillators. Hence, we can conclude that
the three states are still observed with nonidentical oscillators.
Moreover, we found that variation in the natural frequency
increases the convergence time drastically. Figure 8 depicts
the time development of the second order parameter R2 when
the two-cluster state appears. It reveals that the convergence
to the two-cluster state becomes much slower as frequency
variation, denoted by σω, increases. By rescaling the time and
the weights, σω is absorbed into ε (= ε

σ 2
ω

). ε is the parameter of
the changing rate of weights, so the increase of σω slows the
change of weights.

B. Effects of perturbations in the plasticity function �(φ)

In the model, the plasticity of the coupling weight is
determined by the function �(φ) and we assume the form of the
function as �(φ) = − sin(φ + β), taking only the lowest-order
Fourier mode into account for simplicity. In this subsection,
we consider small perturbations in the function �(φ) and
evaluate the effect of the perturbations on the emergence of
the asymptotic states.
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K . The parameters
are as follows: α = 0.3π , ε = 0.005. (a) σω = 0.05, (b) σω = 0.1,
(c) σω = 0.15.

First, let us attempt to consider a biased function �̄(φ) given
by

�̄(φ) = �0 − sin(φ + β).

The plasticity has a bias �0 [= ∫ 2π

0 �̄(φ)dφ] toward an
increase or a decrease of the weight, which potentially causes
the system behavior to change drastically. Varying the bias
�0, we examined whether the system converges to the three
states from a random initial condition. Figure 9 shows the
three measures, R̄2,C̄,
K . The profiles of these measures
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FIG. 9. (Color online) Emergence of the three states under a
biased plasticity. The biased plasticity function �̄(φ) is a perturbed
function of the plasticity with a bias �0 [= ∫ 2π

0 �̄(φ)dφ] toward
an increase or a decrease of the weights. Each graph shows three
measures as a function of β for several �0: the second order parameter
R̄2, the long-time correlation C̄, and the rate of change of weights

K . α = 0.3π and ε = 0.005. Each data point is estimated from 20
trials with various initial conditions.

indicate that the system still exhibits the three asymptotic
states depending on β, even if the bias �0 �= 0. Note that the
boundaries between the three states are slightly modulated by
the bias �0. Hence, under the biased plasticity, the system
exhibits qualitatively the same behavior as with unbiased
plasticity.

Next, we discuss the stability of the two-cluster and
coherent states against a perturbation of the plasticity function.
We consider a plasticity function containing small higher
Fourier modes,

�̃(φ) = − sin(φ + β) +
M∑

m=2

cm sin(mφ + βm),

where
∑M

m=2 |cm| � 1. In both ordered states, the coupling
weights take either of the limiting values, 1 or −1. These values
remain unchanged unless the perturbation alters the sign of
�(φ). This means that the stability of both states is guaranteed
by the condition | sin(
φ + β)| >

∑ |cm|. In the case of the
two-cluster state, the relative phases among oscillators take
only two values: 
φ = 0, π , and the stability condition is
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Example of the coherent state. α = 0.3π . β = −0.2π . (c) Each graph
shows three measures in a stationary state as a function of β: the order
parameters R̄1 and R̄2, the correlation C̄, and the rate of change of
weights 
K . α = 0.3π and ε = 0.005. Each data point is evaluated
by randomly perturbed functions �̃(φ).

to be checked only at these two values. Considering a small
positive value δ (∼∑ |cm|), the stability condition holds in
the range β ∈ [δ,π − δ]. This implies that the two-cluster
state is structurally stable against this perturbation, although
the boundary of the two-cluster state changes slightly. In
the coherent state, the relative phases among oscillators are
uniform in [−π ,π ]. Therefore, a few pairs of oscillators for
which | sin(
φ + β)| ∼ δ do not meet the stability condition,
and the coupling weights between them, can be affected by the
perturbation, although most pairs of oscillators are unchanged.
This means that a few coupling weights (∼δ) among the
oscillators can be altered by the perturbation. This situation
is similar to a failure of a network, in which a few connections
of the network are not functioning. Next, we numerically
confirmed the stability of the coherent state and summarized it
in Fig. 10. The perturbation of �(φ) is randomly determined
for each trial (50 trials for each β). The amplitudes of higher
modes, cm, are randomly selected from a uniform distribution,
keeping a condition

∑ |cm|= 0.1. βm is chosen uniformly from

[−π,π ]. The maximum mode M is set to be 15. Figure 10(c)
depicts the measures as a function of β: the order parameters
R̄1,R̄2, the long-time correlation C̄, and the rate of change
of weights 
K . The profile of these measures indicates that
the two-cluster and coherent states are stably organized by
the perturbed plasticity functions. Actually, the graphs in
Figs. 10(a) and 10(b) show examples of the two-cluster state
and the coherent state, respectively. Hence, these ordered states
are not affected by a small perturbation in the function �(φ).

C. Coevolving dynamics on a scale-free network

We consider a topology of the connections in the coevolving
dynamics. In the previous sections, we have assumed a case
of the all-to-all connections for simplicity, in which each
oscillator is coupled with the other oscillators. However, real-
world networks have complex topological structures of their
connections, such as scale-free, small-world, and modules
[22–24]. The collective synchronization on the static complex
networks has already been investigated extensively [25–32]. In
the next stage, these topological structures should be involved
in the coevolving dynamics both on and of a network.

In this section, we focus on the effect of network topology
on the coevolving dynamics. Specifically, we examine whether
the asymptotic states found in the all-to-all connections are
still observed on a scale-free network. We assume here that the
scale-free topology is given before the procedure of coevolving
dynamics and is not changed through the coevolving dynamics.
Then, the coevolving dynamics of oscillators and weights is
given by

dφi

dt
= 1 − 1

Ni

∑
j∈{Ni }

kij sin(φi − φj + α),

dkij

dt
= −ε sin(φi − φj + β), |kij | � 1,

where {Ni} is a set of nodes connecting to the ith node and Ni

is the number of nodes in the set. The topology of connections
is generated by the Barabási-Albert (BA) model [23] for each
trial, characterized by the following parameters: the number
of additional nodes for each step m = 5, the number of initial
nodes m0 = 10, and the total number of nodes N = 1000.
We numerically confirmed that these parameter values do not
critically affect the following results. Figure 11(a) illustrates
an example of the generated scale-free network. The mean
number of connections in this network is significantly smaller
than the all-to-all network. With the given parameter values,
the number of connections is about 2mN (=104) for the scale-
free network and N2 (=106) for the all-to-all network. Despite
this significant difference in the connections, we found that the
system behavior of the scale-free network is qualitatively the
same as that of the all-to-all one and the three asymptotic
states still emerge, as shown in Figs. 11(b)–11(e). In the
two-cluster and coherent states, no significant relationship
is observed between the organized relative phases and the
degree of the nodes in the scale-free network. Therefore, the
topological difference between the scale-free and the all-to-all
connections has no considerable effect on the emergence of
the three asymptotic behaviors in this situation. This result is
not surprising. It has been reported that the coupled dynamics
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FIG. 11. (Color online) Coevolving dynamics of weights and oscillators on a scale-free network. (a) The topology is generated by the
Barabási-Albert model for each trial. The number of additional links at each step m = 5, the number of initial nodes m0 = 10, and the total
number of nodes N = 1000. (b) Three measures as a function of β: the second order parameter R̄2, the long-time correlation C̄, and the rate of
change of weights 
K . α = 0.3π , ε = 0.005. (c,d) Example of the two-cluster state. (Left) Time developments of φi(t). (Right) Relationship
between the node degree and the phases. β = −0.7π , α = 0.3π . (e,f) Example of the coherent state. β = −0.1π , α = 0.3π . (g,h) Example of
the chaotic state. β = 0.7π , α = 0.3π .

on the scale-free network generated by the BA model is well
described using the mean-field approximation, which is exact
in the case of all-to-all coupling [26,33,34]. Our result supports
this conjecture.

In this case, we assumed that the network topology is not
modified by the coevolving dynamics in order to eliminate
additional effects on the network topology and clarify the pure
effects of the scale-free topology on the dynamics. However,
the evolution of topology is closely related to the dynamics
at the nodes in general. A series of studies of coevolving
dynamics incorporating the evolution of topology, such as
creation, deletion, and rewiring of links, are required to find
novel concepts to capture the essential network topology
related to the functional activity of network-based dynamical
systems.

V. DESIGNING MULTICLUSTER STATES

We have examined the three types of asymptotic behaviors
of the coupled oscillator system described by Eq. (3). In
this section, let us consider other types of behaviors of the
coevolving dynamical system given by Eqs. (1) and (2),
designing the plasticity function �(φ). We present a designed
multicluster state that can be self-organized even from a
random initial state.

As mentioned in the previous sections, the system exhibits
the two-cluster state, in which the oscillators are organized
into two synchronized groups. This result leads to a natural
question of whether this system has another multicluster state,
and, if so, how to control the number of clusters as desired.
In the coupled oscillator system given by Eqs. (1) and (2), the
asymptotic behavior of oscillators can be designed by choosing
an appropriate plasticity function �(φ). Figure 12 displays
such examples. Using the function �(φ) = cos(2φ − 0.1π ),
this system exhibits a three-cluster state even from random
initial weights and phases. The function �(φ) = cos(3φ −
0.1π ) generates a four-cluster state. We numerically found
that the m-cluster state is observed for �(φ) ∼ cos[(m − 1)φ].
Hence, this model exhibits a variety of behaviors depending
on the form of the plasticity function �(φ), which will provide
a simple framework for designing self-assembled collective
behaviors in dynamical systems.

VI. DISCUSSIONS

We have investigated a network of coupled phase oscilla-
tors, in which both the phases of oscillators and the coupling
weights evolve simultaneously. Through this interplay of
oscillators and coupling weights, the relative phases of the
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oscillators and their weights are coordinated as a result of the
behavior of the dynamical system.

When the dynamics of the weights are governed by a
sinusoidal function of relative phases, we found that this
coevolving dynamical system robustly yields three distinct
types of self-organized phase patterns of oscillators with
structured weights: the two-cluster state, the coherent state,
and the chaotic state. Furthermore, we demonstrated that
self-assembled multiclusters can be designed by controlling
the plasticity function.

A number of studies have revealed that coupled oscillator
systems can exhibit a wide variety of spatiotemporal patterns,
including several types of clustered, phase-locked, and tur-
bulent states, even when the oscillators are coupled globally
or diffusively with static coupling weights [35–42]. When
compared with these phase patterns, our results emphasized
that the phase patterns of the oscillators and the weighted
network of interactions between them are simultaneously
self-organized through the coevolving dynamics even if the
initial coupling weights are randomly disordered. In other
words, the coevolving dynamics generates the patterns of the
phases as well as the weights.

The generated patterns in the asymptotic states have several
different characteristics compared with the similar phase
patterns observed in the the conventional coupled phase
oscillators. It is known that globally coupled phase oscillators
can generate two or more clusters if coupling function �(φ)
has a second or higher Fourier mode, and the ratio of the
populations among the organized clusters is related to the
phase difference between the clusters in general [36–38]. In
contrast, our model can exhibit the two-cluster state even when
the coupling function �(φ) has only the first Fourier mode.
The phase difference between the clusters is maintained at π ;

however, the ratio of the populations depends on the initial
state, as mentioned in Sec. III A. Furthermore, in the two-
cluster and coherent states, information regarding the phase
relationship between the oscillators is stored in the coupling
weights between them, because the coupling weights are
related to the phase relationships through the coevolving
dynamics.

The collective behavior of coupled oscillators with activity-
dependent interaction has been studied recently under various
conditions [21,43–51]. Furthermore, other types of dynamics
on adaptive networks have been studied in several fields of
science [52–58]. In addition, coupled dynamics on randomly
time-varying networks have been reported [59–63]. Therefore,
it is necessary to summarize the various behaviors of a
coevolving dynamical system across their fields and draw a
clear perspective. We believe that our model will provide
a simple framework to understand the nature of coevolving
dynamical systems, which will help us to elucidate the
mechanism by which the organized structures of real-world
networks emerge as a natural process of their dynamical
systems.
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APPENDIX A: TWO-OSCILLATOR SYSTEM

In this appendix, we consider a two-oscillator system, in
which a pair of oscillators is coupled by reciprocal connections.
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FIG. 13. (Color online) (a) Phase diagram of a two-oscillator
system. The asymptotic states can be classified into three types:
symmetric, asymmetric, and chaotic. In the bistable region, both the
symmetric and asymmetric states are stable. (b) Phase portraits of
the system in the (k12,k21) plane were obtained using an adiabatic
approximation in Eq. (A2). The parameters (α,β) of these phase
portraits correspond to the red points (b1–b4) in graph (a). The blue
and green lines represent the nullclines for k12 and k21, respectively.
The black circles indicate stable fixed points. It is noted that the
weight kij is bounded in a region [−1,1].

In this case, the dynamics can be written in terms of three
variables, 
φ (≡φ1 − φ2), k12, and k21, as

d
φ

dt
= −k12 sin(
φ + α) + k21 sin(−
φ + α),

(A1)
dk12

dt
= −ε sin(
φ + β),

dk21

dt
= −ε sin(−
φ + β).

The condition ε � 1 implies that 
φ is the fast variable and
k12 and k21 are slow variables. Therefore, 
φ quickly relaxes
to the equilibrium value, 
φ∗. The value 
φ∗ is given by the
condition tan(
φ∗) = − k12−k21

k12+k21
tan α, obtained from d
φ

dt
= 0.

We can thus eliminate the variable 
φ in Eq. (A1). This
equation thereby reduces to

dk12

dt
= −ε sin[
φ∗(k12,k21) + β],

(A2)
dk21

dt
= −ε sin[−
φ∗(k12,k21) + β].

In addition to the fixed point of this dynamical system
satisfying dk12

dt
= dk21

dt
= 0, there is another type of steady state,

in which the weights are given by the limiting values, i.e.,
kij = ±1. Owing to the symmetry of the system, there are
two states: a symmetric and an asymmetric state, as shown
in Fig. 13(b). In the symmetric state, the system has two
stable solutions in which the weights take the same limiting

value. One is an in-phase solution. The weights take the upper
limiting value, k∗

12 = k∗
21 = 1, and the oscillators synchronize

with the in-phase relation, 
φ∗ = 0. The other is an antiphase
solution, k∗

12 = k∗
21 = −1,
φ∗ = π . In the asymmetric state,

the weights take different limiting values as k∗
12 = 1, k21 =

−1, 
φ = −π
2 and k∗

12 = −1, k21 = 1, 
φ = π
2 . With the

asymmetric coupling weights, one oscillator chases after the
other, keeping a π/2 phase relation. The stability condition of
these states is given by sgn [− sin(
φ∗ + β)] = sgn (k∗

12) and
sgn [− sin(−
φ∗ + β)] = sgn (k∗

21), which guarantees that the
weights are clamped on the limiting values. In the other
parameter region where these states are unstable, the weights
seem to converge to zero, as shown in Fig. 13(b). This induces
a chaotic state as discussed in Sec. III C.

From the above analysis, we obtain the phase diagram
shown in Fig. 13(a).

APPENDIX B: LINEAR STABILITY OF THE COHERENT
STATE AND THE TWO-CLUSTER STATE

In this appendix, we consider the linear stability of the
coherent state against a perturbation to the phase variables,
φi . In this situation, the coupling weight is assumed to be
fixed because the time scale of the coupling weight, 1/ε, is
sufficiently large in the limit ε → 0. Given the fixed kij , the
dynamics of the system are given by

dφi

dt
= 1 − 1

N

N∑
j �=i

kij sin(φi − φj + α). (B1)

As mentioned in Sec. III B, in the coherent state the phases are
uniformly distributed with a fixed relation and the weights sat-
isfy the condition kij = sgn (− sin(φi − φj + β)). Therefore,
we define the fixed relative phases φ∗

ij (≡ φ∗
i − φ∗

j ) and the
weights k∗

ij as

φ∗
ij = 2π (j − i)

N
,

k∗
ij = sgn [− sin(φ∗

ij+β)] = −sgn

[
sin

(
2π

N
(j − i) + β

)]
.

First, we calculate the Jacobian matrix DFij . The diagonal
components of the Jacobian matrix are expressed by

DFii = − 1

N

∑
j �=i

k∗
ij cos(φ∗

ij + α)

= 1

N

∑
j �=i

sgn (sin xj−i) cos(xj−i + η),

where xm = 2π
N

m + β and η = α − β. In the limit N → ∞,

DFii = 1

2π

∫ 2π

0
sgn (sin x) cos(x + η)dx = − 2

π
sin η.

The off-diagonal components are also expressed by

DFij = 1

N
k∗
ij cos(φ∗

ij α) = − 1

N
sgn (sin xj−i) cos(xj−i + η).

Let us denote

Ym = − 1

N
sgn (sin xm) cos(xm + η) (m = 1,2,3, . . .).
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Ym is N -periodic so that Ym±N = Ym. Then, the Jacobian
matrix DF is written as⎛

⎜⎜⎜⎝
Y0 Y1 Y2 · · · YN−1

YN−1 Y0 Y1 · · · YN−2

... · · · ...
Y1 Y2 · · · Y0

⎞
⎟⎟⎟⎠ ,

where Y0 = − 2
π

sin η. Since DF is a cyclic matrix, the
eigenvalues λk are

λk = Y0 + ζ kY1 + ζ 2kY2 + · · · + ζ (N−1)kYN−1

(k = 0,1,2, . . . ,N − 1),

and the eigenvectors vk are

vk = 1√
N

(1,ζ k,ζ 2k,ζ 3k, . . . ,ζ (N−1)k)†,

where ζ (=e2πi/N ) is a primitive N th root of unity.
Then,

Reλk = − 2

π
sin η +

N−1∑
m=1

cos

(
2π

N
km

)(
− 1

N

)

× sgn(sin xm) cos(xm + η).

Using cos( 2π
N

km) = cos(kxm − kβ), the equation can be
rewritten as

Reλk = − 2

π
sin η − 1

N

N−1∑
m=1

cos(kxm − kβ)sgn (sin xm) cos(xm + η)

= − 2

π
sin η − 1

2π

∫ 2π

0
cos(kx − kβ)sgn (sin x) cos(x + η)dx

=
{

− 2
π

sin η − 2
π(k2−1) (cos kβ sin η + k sin kβ cos η) (k is even),

− 2
π

sin η (k is odd).

The first eigenvalue λ0 (=0) corresponds to a uniform shift
of the phases. Thus, the stability of the coherent state is
determined by

max
k�1

Reλk < 0. (B2)

Next, we consider the linear stability of the two-cluster
state. In the two-cluster state, if the oscillators i,j belong to
the same cluster, the relative phases and the coupling weights
are given by

φ∗
ij = 0, k∗

ij = 1.

If they belong to different clusters, then

φ∗
ij = π, k∗

ij = −1.

For this fixed state, the Jacobian matrix DF is given
by

DFij =
{−N+1

N
cos α (i = j ),

1
N

cos α (i �= j ),

which is independent of the ratio of the population size
between the two clusters. Then, we obtain the eigenvalue λk

as

λk =
{

0 (k = 0),

− cos α (k �= 0).
(B3)

Given that α ∈ [0,π/2), the two-cluster state is always stable
against a perturbation of the phases.
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