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Asymmetric neighborhood functions accelerate ordering process of self-organizing maps
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A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus
space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships
between the stimuli, the SOM can be applied to certain types of information processing such as data visualization.
During the learning process, however, topological defects frequently emerge in the map. The presence of defects
tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological
defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple
case of mapping one-dimensional stimuli to a chain of units. In this paper, we demonstrate that even when
high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and
real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm
improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data
by using this algorithm.
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I. INTRODUCTION

Topographic mapping is observed in mammalian primary
sensory cortices as a topology-preserving correspondence
between the feature of external stimuli and the spatial position
of the activated neurons [1,2]. A self-organizing map (SOM)
learning algorithm was introduced as a simplified neural
network model to explain the formation of such cortical
topographic maps [3–7]. While the SOM originated as a
biophysical model of the topographic mapping seen in the
primary sensory cortex, it has found wide applications in data
mining and as a visualization method for complex data sets. In
this study, we focus on such practical aspects of information
processing using the SOM.

A useful feature of the topographic map generated by
the SOM learning algorithm is that the dimensionality of
the input (stimulus) is reduced when mapped to a spatially
low-dimensional array of units. Moreover, it is known that
maps generated by the algorithm approximate the probability
density of the stimuli in the stimulus space [8,9]. These facts
imply that the algorithm can capture essential information in
complicated, high-dimensional data sets by mapping them to
low-dimensional representation spaces. Thus, the algorithm
can be applied to certain types of information processing,
such as data mining, visualization, and nonlinear principal
component analysis [10].

For the SOM algorithm to be applicable to practical data
processing, the algorithm must be able to reliably and quickly
form a globally topographic map. However, this process is
often disturbed by the emergence of a topological defect in
the map [11,12], which then separates the entire map into
multiple, locally ordered regions. A map having a topological
defect is no longer globally topographic and, thus, does
not accurately represent the essential structure of the data
set. Once a topological defect appears in a map during the
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learning process, it tends to remain for a long time and slows
down the ordering process of the SOM. Consequently, the
presence of this topological defect tends to prevent the system
from reaching a globally ordered state and hinders practical
application of the algorithm.

In this study, we investigate a solution against topological
defects that appear during learning. Some of the authors
showed in a previous study that the use of asymmetric
neighborhood functions in the algorithm is effective for
removing topological defects and accelerating correct map for-
mation [13]. The neighborhood function determines the spatial
dependence of the effective learning rate on the unit array and
is conventionally a symmetric function such as a Gaussian
function. However, this symmetry tends to stabilize the defect,
allowing it to persist for a long time. The previous study mainly
dealt with the simplest, one-dimensional case (mapping from a
one-dimensional stimulus space to a one-dimensional chain of
units), where a topological defect appeared as a kinklike state
formed by the reference vectors of the units. In the case of
a conventional, symmetric neighborhood function, the defect
moves similarly to a random-walk particle. In contrast, the
asymmetry of the neighborhood function adds driftlike motion
to the defect. As a result, the defect can be moved quickly out of
the map. However, under more general conditions, i.e., higher-
dimensional stimulus, it is not evident whether the asymmetric
neighborhood function is effective in removing topological
defects, because the geometric properties and stability of a
defect may change depending on the dimensionality of both
the stimulus and unit space.

In this paper, we demonstrate that the asymmetric neigh-
borhood function can reliably eliminate topological defects,
and that it accelerates the ordering process of the SOM
irrespective of the dimensionalities of the stimulus and the
unit space. In Sec. II, we describe the SOM algorithm and
the asymmetric neighborhood function. In Sec. III, we show
the effectiveness of the asymmetric neighborhood function
through theoretical arguments and numerical simulations,
using various combinations of dimensions for the stimulus
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space and the array of units. We test the performance of the
algorithm on three real-world data sets before concluding the
paper in Sec. IV.

II. ALGORITHM

The SOM can generate a globally topographic map that
maps a set of Ds-dimensional stimuli to a Du-dimensional
array composed of N units [Fig. 1(a)]. Each unit i has its
own preferred stimulus feature represented by the reference
vector mi ∈ RDs (i = 1,2, . . . ,N). An input stimulus or data
x ∈ RDs is mapped to the best-matching unit c according to
the winner-take-all rule, given as

‖x − mc‖ = min
i

{‖x − mi‖}, (1)

where ‖ · ‖ denotes the Euclidean norm. The SOM learning
algorithm iteratively updates the reference vectors as follows:
At each time step t , the stimulus x(t) is given. Every reference
vector mi is then updated as

mi(t + 1) = mi(t) + αh(ric)[x(t) − mi(t)] (i = 1, . . . ,N),
(2)

where α > 0 is the constant learning-rate parameter. Here, the
neighborhood function h(r) represents the spatial dependence
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FIG. 1. (a) Schematic of the SOM algorithm. Each unit i has its
own preferred stimulus feature, which is indicated by the reference
vector mi in the stimulus representation space. A stimulus x is mapped
to the best-matching unit c represented by the gray circles. (b), (c),
and (d) Examples of globally ordered maps (left) and disordered
maps (right) for (Ds,Du) = (2,2),(2,1), and (1,1), respectively. In
figures showing two-dimensional stimuli (b and c), the reference
vectors are plotted in the two-dimensional stimulus space, and every
pair corresponding to the neighboring units is joined by a line;
for one-dimensional stimuli (d), the reference vectors of all units
are plotted, with the horizontal axis indicating the index of units.
(e) Typical scenarios of the SOM learning algorithm. Topological
defects may emerge in the map and slow down the ordering process
depending on the stimulus distribution and the initial conditions of
the weight vectors. Note that a random initial condition (t = 0) is
illustrated as an almost entirely disordered state of the map. Use
of the asymmetric neighborhood function can prevent emergence
of topological defects, resulting in the formation of a globally
topographic map.
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FIG. 2. (a) Symmetric neighborhood function for two-
dimensional unit arrays (Du = 2). (b) Asymmetric neighborhood
function [Eq. (3) with β = 3]. Vector k indicates the direction of
asymmetry.

of update intensity, where ric � 0 denotes the distance between
the updated unit i and the best-matching unit c. We assume
the Gaussian function h(r) = exp(−r2/2σ 2) [Fig. 2(a)],
where the parameter σ specifies the learning width on the unit
array.

The iteration of the learning step we have described can
lead to the formation of a globally topographic map, because
each learning step moves the reference vectors toward a
configuration that fits the distribution of the given data well.
The left panel of Fig. 1(b) depicts a globally topographic map
for two-dimensional stimuli and a two-dimensional unit array
(Ds = Du = 2). In the figure, the reference vectors of all units
are plotted with lines between every pair of nearest-neighbor
units. As seen in the figure, for reference vectors close to each
other in the stimulus space, their corresponding unit pair is at
a close distance on the unit array; this indicates that similar
stimuli are mapped to the same unit or neighboring units. Such
an ordered configuration of the reference vectors generally
characterizes the global topography of the map. In this sense,
a globally topographic map is referred to as an ordered state of
the SOM. The ordered state is stable because, once attained,
this state is not broken during learning.

However, the algorithm frequently forms an undesir-
able, imperfect topographic map having a topological defect
[Fig. 1(b), right]. A topological defect can be defined as a
point of global topographic conflict in the map, where the
ordered configuration of the reference vectors is separated into
multiple, locally ordered regions. The map in such a disordered
state relates two similar stimuli to two distant positions on the
unit array. This implies that the neighborhood relationships
between the stimuli are no longer preserved through this
mapping. Such a disordered state of the map is frequently as
stable as an ordered state. This indicates that once a topological
defect appears in the map, it remains for a long time during
learning, resulting in a drastic slowdown of the ordering speed
of the map. We note that even under different dimensionality
conditions, other types of topological defects still appear and
slow down the ordering process [Figs. 1(c) and 1(d)].

In practical situations, ordered topographic maps should
form quickly and robustly. In general, the appearance of a
topological defect depends on the initial values of the reference
vectors and the temporal order in which the stimuli are
presented [Fig. 1(e)]. Controlling these two conditions may
allow the formation of topographic maps without an interim
defect. However, such an approach is neither practical nor easy,
and thus, a different solution must be sought. In this context,
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some of the authors have reported that when asymmetry is
introduced in the neighborhood function h(r), topological
defects can be effectively moved out of the map [13]. As
a result, the correct map formation can be accelerated. The
asymmetric neighborhood function [Fig. 2(b)] is written as

hβ(r̃ic) = 2

(
1

β
+ β

)−1

exp

(
− r̃2

ic

2σ 2

)
, (3)

where the asymmetrically rescaled distance ric is

r̃ic =
⎧⎨
⎩

√( r ic ·k
β

)2 + ‖r⊥‖2, if r ic · k � 0,√
(βr ic · k)2 + ‖r⊥‖2, if r ic · k < 0.

(4)

A unit vector k indicates the asymmetry direction on the array
of units r⊥ ≡ r ic − (r ic · k)k, and the asymmetry parameter
β � 1 represents the degree of asymmetry. The symmetric
function can be derived from the asymmetric function by
substituting β = 1.

In the next section, we compare the ordering process
induced by the symmetric and asymmetric neighborhood
functions and show that the asymmetric neighborhood function
successfully accelerates the ordering process under broad
conditions. For numerical simulations, the stimulus vector x is
randomly sampled from a uniform distribution [0,1]Ds , unless
otherwise noted. To quantitatively measure the ordered state
of a map, we introduce an order parameter [Fig. 3(a)]. A to-
pographic map corresponds to a globally ordered arrangement
of reference vectors, whereas a disordered map containing
topological defects is separated into multiple, locally ordered
regions. We denote the size of each locally ordered region by Sl

and define the order parameter as η ≡ maxl{Sl}∑
l Sl

(0 < η � 1). The
order parameter η = 1 corresponds to a correct topographic
map. The value of the order parameter decreases as the map is
further divided into locally ordered regions. We describe the
calculation of Sl in the Appendix.

We also introduce a distortion parameter to quantify the
degree of distortion of a map [Fig. 3(b)]. The previous study
by some of the authors [13] showed that when asymmetry is
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FIG. 3. Typical states of a map for Ds = Du = 2 and corre-
sponding values of the introduced parameters. (a) Order parameter
η. η = 1 for a globally ordered mapping. Value of η decreases as
topological defects separate the map into multiple, locally ordered
regions. (b) Distortion parameter χ . Large χ corresponds to a strongly
distorted map that represents stimulus distribution less accurately than
nondistorted maps.

introduced to a neighborhood function with a fixed intensity
and direction, the generated map tends to be distorted.
A distorted map does not correctly represent the stimuli
distribution and is less useful for practical data processing.
To measure the distortion of the map, we define the distortion
parameter as χ ≡

√
Var[�i ]
E[�i ]

, where �i denotes the size of the
Voronoi cell formed by the reference vector mi . Because we
consider uniform stimulus distribution, the Voronoi cell size
of a unit is proportional to the probability that a given stimulus
is mapped to the unit. For more uniform maps (with less
distortion), the variation of the Voronoi cell sizes is reduced,
where χ takes lower values. Note that χ is meaningful only if
the map is globally ordered (i.e., η = 1).

III. RESULTS

A previous study by some of the authors showed that
the asymmetric neighborhood function can quickly eliminate
topological defects under the condition that both the stimulus
space and the array of units are one-dimensional (i.e., Ds =
Du = 1) [13]. However, such a simple scenario, under which
analytical investigations are possible [8,14], may be irrelevant
with respect to practical application for the following reasons:
First, a one-dimensional stimulus or data space (Ds = 1)
indicates that the dimension of stimulus or data space cannot
be reduced any further. Second, the SOM algorithm generally
maps the high-dimensional data set to a low-dimensional unit
space, which implies that essential information is extracted
from the data. Thus, in practice, the dimensionality condition
should be Ds > Du, unlike that of a simple, one-dimensional
condition.

Because the properties of topological defects vary for
different values of Ds or Du, it is not evident that the
asymmetric neighborhood function is always effective. Thus,
we investigate whether the asymmetric neighborhood function
can eliminate topological defects when the dimensions of
Ds and Du are varied, as summarized in Fig. 4. We start
with low values and gradually increase each value of Ds

and Du such that Ds � Du. We consider the cases where
Du = 1 or 2 because mapping the stimulus space to more
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FIG. 4. Condition matrix for various dimensionalities of stimulus
space Ds and unit array Du. This study argues that the asymmetric
neighborhood function is effective for removing topological defects
for Ds = 2 (Secs. III A and III B) and for Ds � 3 (Sec. III C). The
case Ds = Du = 1 was previously studied in Ref. [13]; the condition
(Ds,Du) = (1,2) is excluded because Ds < Du.
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than a two-dimensional unit space would be less useful
for data processing. First, we confirm that the asymmetric
neighborhood function is effective for (Ds,Du) = (2,2) and
(2,1). We then extend the discussion to higher-dimensional
cases, where it is observed that the asymmetric function is
effective. Thus, the practical use of the algorithm is a realistic
possibility. Toward the end of the section, we show the results
when the algorithm is applied to real-world data sets, which
demonstrates that the map formation process can be improved
for practical applications.

A. Dimension-preserving mapping

First, we investigate the case in which the stimuli are two-
dimensional and the mapping preserves dimensions (Ds =
Du = 2). This condition corresponds to the simplest case of
a unit array in a two-dimensional lattice, which is frequently
used in practice. We set the initial reference vectors such that
the map has a single topological defect at the center, and
we focus on its behavior during the learning process. When
the conventional symmetric neighborhood function is used,
a topological defect fluctuates around the initial position but
remains stable for virtually an infinite number of time steps.
We confirm that a defect is not removed until t = 107. This
is contrary to the case Ds = Du = 1 in which a defect moves
similarly to a random-walk particle and disappears within finite
time steps. This suggests that a disordered state in the two-
dimensional SOM is more robust than in the one-dimensional
SOM.

The asymmetric neighborhood function expressed in Eq. (3)
eliminates the topological defect much faster than the sym-
metric function [Fig. 5(b)], because the asymmetry induces
a drifting of the defect. We also confirm that the removal of
the defect occurred reliably, over many trials [Fig. 6(a)]. The
order parameter η averaged over 30 trials quickly attains the
value 1 using the asymmetric function, indicating that in all

0

1

 0  1

t = 0 t = 2000 t = 10000 t = 16000 t = 24000

(a)

(b)

(c)

FIG. 5. Snapshots of the typical ordering process of the SOM
using (a) symmetric, (b) fixed asymmetric, and (c) modified asym-
metric neighborhood functions. Both the stimulus space and the array
of units are two-dimensional (Ds = Du = 2). As an initial condition,
the map has a single topological defect at the center. The param-
eters of the simulation are N = 30 × 30 = 900, α = 0.05, σ = 4,

β = 1.5, tsym = 24 000, and ω = π

24 000 .

 0

 0.5

 1

 0  24000
Time

 0

 0.5

 1

 0  24000
Time

O
rd

er
 p

ar
am

et
er

D
is

to
rt

io
n

Fixed asym.
Modified asym.

Symmetric
Fixed asym.
Modified asym.

(b)(a)

FIG. 6. Time development of (a) order parameter η and (b)
distortion parameter χ , averaged over 30 trials under the same
condition as that in Fig. 5. The standard deviations are plotted as
error bars.

trials the topological defect is removed and the map becomes
globally ordered. In contrast, using the symmetric function,
the averaged value of η is approximately 0.5, indicating that
the defect remains at the center of the map and divides the map
roughly in half, into two locally ordered regions.

Although the maps obtained with the asymmetric function
have no topological defects, they tend to be distorted and
are still not strictly topographic. Because we employ uniform
stimulus distribution, the reference vectors corresponding to
the correct topographic mapping are uniformly distributed in
the stimulus space. However, the resultant maps are distorted
[Fig. 5(b)]; i.e., the reference vectors are located in the
stimulus space with a bias and do not correctly represent the
stimuli distribution. To reduce the map distortion, we further
modify the method such that the form of the neighborhood
function changes with time as follows [Fig. 7(a)]: First, as the
learning proceeds, to average out the distortion of the map,
the direction of asymmetry k is rotated at angular velocity ω

as k(t) = (cos ωt, sin ωt)T . Second, to reduce distortion, the
asymmetry parameter β is gradually decreased as

β(t) =
{

1 + (β0 − 1)
(
1 − t

tsym

)
, if t < tsym,

1, if t � tsym,
(5)

where tsym is the time at which the neighborhood function is
symmetric (β = 1). The asymmetric neighborhood function
with this modified method is called the modified asymmetric
function, while that without the modification is called the fixed
asymmetric function.

t = tsymt = 0

 0

 1 (β = 1)ω

(a) Du = 2

(b) Du = 1

 0

 1

h

h
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FIG. 7. Modified method to reduce map distortion. (a) When
Du = 2, the direction of asymmetry k (indicated by the direction of
the arrows) is rotated at angular velocity ω, and, simultaneously, the
asymmetry parameter β (length of the arrows) is gradually decreased
as the neighborhood function becomes symmetric (β = 1) at t = tsym.
(b) For Du = 1, the asymmetry direction k is inverted at every Tflip

time steps, and the asymmetry parameter β is gradually decreased.
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FIG. 8. By using random initial reference vectors, the asymmetric
neighborhood function reliably generates an ordered map, and
the modified method effectively reduces distortion (Ds = Du = 2).
(a) Number of trials in which the map is ordered (η = 1) (ordered
rate). (b) Distribution of the distortion parameter χ at t = 96 000. The
modified method effectively reduces the distortion of the map. The
parameters are the same as those in Fig. 5, except for tsym = 96 000.

By using the modified asymmetric function, the emergence
of topological defects and distortions of the map can be
simultaneously suppressed [Fig. 5(c)]. We also confirm that
the distortion reduction occurred in a reliable manner, as con-
firmed over many trials [Fig. 6(b)]. The distortion parameter χ

predictably decreased by using the modified method, as shown
by averaging its results.

Until now, we have investigated the cases in which the
map has a single topological defect at the center. However,
in general, multiple topological defects may emerge within
a map. To examine the effectiveness of the asymmetric
neighborhood function in such cases, the initial reference
vectors are randomly selected from the uniform distribution
within [0,1]2. We perform 1000 trial simulations and examine
the rate of trials in which the map is ordered (ordered
rate) at each time step and the distribution of distortion
parameter χ at the end of the learning process. By using
the symmetric function, the ordered rate reaches the plateau
value of approximately 60%, indicating that defects remain
at the end of the learning process in 40% of the trials
[Fig. 8(a)]. The modified asymmetric function can order the
map in all trials and effectively reduce the distortion of the
map simultaneously [Fig. 8(b)]. In contrast, the growth of
the ordered rate is slower using the fixed asymmetric function.
This is because the intensity of the drift force depends on the
directions of asymmetry of the neighborhood function and the
topological defect. This indicates that the fixed asymmetric
function has its strong and weak directions with respect to
eliminating a defect. Because the random initial condition
allows topological defects to emerge in various directions, the
ordering speed obtained using the fixed asymmetric function
slows down if a defect emerges in the weak direction.

B. Dimension-reducing mapping

Next, we examine the case in which two-dimensional
stimuli are mapped to a one-dimensional array of units
(Ds,Du) = (2,1). This is the simplest scenario for dimension-
reducing mappings. A topological defect is in the shape of a
cross-point formed by the chain of reference vectors. We set
the initial reference vectors such that the map has a single
topological defect. It is difficult to remove the defect by using
the conventional symmetric neighborhood function [Fig. 9(a)].
Similar to the case when Ds = Du = 2, for (Ds,Du) = (2,1),

 0
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 t = 0         t = 1500      t = 2000    t = 10000    t = 20000

(a)

(b)
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FIG. 9. Snapshots of typical ordering process of the algorithm
using (a) symmetric, (b) fixed asymmetric, and (c) modified asym-
metric neighborhood functions, where two-dimensional stimuli are
mapped to a one-dimensional chain of units (Ds = 2,Du = 1). As an
initial condition, the map has a single topological defect at the center.
To visualize the distortion of the map well, the reference vectors of
every 30 units are depicted as filled circles. The parameters are N =
1000, α = 0.05, σ = 30, β = 2, tsym = 20 000, and Tflip = 5000.

a defect is stable and remains in the map for virtually an infinite
number of (at least 107) time steps.

We examined the fixed and modified asymmetric neigh-
borhood function and obtained results similar to those for
Ds = Du = 2. We summarize the methods and the results as
follows:

(i) A fixed asymmetric function can quickly remove
cross-point topological defects, but tends to distort the map
[Fig. 9(b)].

(ii) To reduce the distortion of the map, we introduce
the modified method in which the asymmetry parameter β

is gradually decreased as in Eq. (5), and the direction of
asymmetry is inverted at every Tflip time steps [Fig. 7(b)]. A
correct topographic map can be generated without distortion
by using the modified asymmetric function [Fig. 9(c)].

(iii) Even for random initial reference vectors, correct
topographic maps without defects and distortion can be
reliably generated using the modified asymmetric function
(Fig. 10). Unlike the case Ds = Du = 2, the growing speed of
the ordering rate is similar for fixed and modified asymmetric
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FIG. 10. By using the random initial reference vectors, the
modified asymmetric neighborhood function generates an ordered
map in most of the 1000 trials (Ds = 2,Du = 1). (a) Time course
of the ordered rate. (b) Distribution of the distortion parameter χ at
t = 30 000. The parameters are the same as those in Fig. 5 except for
tsym = 30 000.
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FIG. 11. When uniformly distributed stimuli in three- dimen-
sional space are mapped to a one-dimensional chain of units,
(Ds,Du) = (3,1), no topological defects emerge even if the con-
ventional symmetric neighborhood function is used. No signifi-
cant difference can be seen between the learning process using
(a) symmetric and (b) modified asymmetric neighborhood functions.
Initial reference vectors are randomly selected from [0,1]3, and the
parameters are N = 300, α = 0.05, σ = 5, β = 3, tsym = 20 000,
and Tflip = 5000.

functions [Fig. 10(a)] owing to the lower degree of freedom in
the defect direction.

C. Higher-dimensional stimuli

Finally, we investigate the case in which the stimulus space
is more than two-dimensional. For practical applications of
the SOM algorithm, the dimension of stimuli or data is usually
much higher than that of the array of units. Thus, this scenario
is more relevant to the application of the algorithm than our
two cases. In this scenario, we examined two sample cases for
(Ds,Du) = (3,1): First, the stimuli are uniformly distributed
in the cubic region [0,1]3, and, second, the distribution is
restricted to the vicinity of a two-dimensional curved surface.

The uniform distribution of the stimuli ensures that no
topological defects are formed during learning, even when
the conventional symmetric neighborhood function is used
(Fig. 11). This is because when a one-dimensional chain of
units fits three-dimensionally distributed stimuli, topological
defects (cross-points) cannot emerge because of the high
dimensionality of the stimulus distribution. Accordingly, in
this case, there is no significant difference between the maps
generated using the symmetric and asymmetric neighbor-
hood functions with respect to the emergence of topological
defects. A similar situation occurs in the embedding of
trajectories of dynamical systems. It was shown that when
a d ′-dimensional trajectory is embedded in a d-dimensional
state space, the condition d � 2d ′ + 1 is sufficient to have no
generic self-intersections of the trajectory [15]. Analogously,
no topological defects emerge and stay within the map during
the learning process if Ds � 2Du + 1. It may seem that it
is no longer necessary to introduce asymmetric neighborhood
functions when this condition is satisfied. Indeed, in our sample
case (Ds,Du) = (3,1), the condition is satisfied. Nevertheless,
we believe that our modifications to the SOM algorithm are
still relevant when the following aspects are considered. We
have assumed that the stimuli are distributed uniformly in
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FIG. 12. (a) Stimulus distribution limited to the vicinity of a two-
dimensional surface in the three-dimensional space. (b) Emergence
of topological defects when the symmetric function is used. (c) Use
of the asymmetric function resulting in correct map formation. The
parameters are the same as those in Fig. 11, and the thickness of
the stimulus distribution is ε = 0.05. (d) Rate of trials (70) in which
the map has topological defects at t = 60 000. Using the symmetric
function, topological defects occur for small ε.

a three-dimensional region. However, this assumption is not
true for many practical applications. In the application of the
algorithm, we aim to extract topographic information about
the low-dimensional nonlinear manifold on which the stimuli
(or data) are distributed. This means that even if the dimension
of the stimuli is high, the data are typically distributed along a
lower-dimensional manifold.

Accordingly, to examine the effectiveness of the asym-
metric neighborhood function in such scenarios, we consider
another sample case in which the stimulus distribution is
limited to the vicinity of a two-dimensional curved surface in
the three-dimensional stimulus representation space (Fig. 12).
As a result, cross-point topological defects occur when the
symmetric neighborhood function is used, as in the case of
uniformly distributed two-dimensional stimuli (e.g., Fig. 9).
When the asymmetric neighborhood function is used, topo-
logical defects are removed and a correct topographic map
can be obtained. If the thickness of stimulus distribution ε

is gradually reduced, below a particular value of ε, there is a
significant increase in the tendency that the topological defects
remain after learning [Fig. 12(d)]. We evaluate the rate of trials
in which topological defects remain at the end of the learning
(disordered rate). We observe that for small ε (�0.07), the
disordered rate is a nonzero value when the symmetric function
is used. In contrast, the disordered rate is zero over the entire
range of ε when the asymmetric function is used, as shown in
Fig. 12(d), implying that topological defects can be removed
for any ε.

To verify whether the asymmetric function can have prac-
tical advantages, we also consider three real-world data sets
provided by the UCI Machine Learning Repository [16]. The
first is the Auto MPG data set, which contains 398 automobile
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FIG. 13. Results of the application of SOM to three real-world data sets. (a) Snapshots of typical learning results for the Auto MPG
data set. While the symmetric function typically results in maps having kinklike defects (left column), the modified asymmetric function
successfully generates globally ordered maps (right column). The data are depicted as gray points. Different three-dimensional subspaces of
the data space are shown in each row. (b) Same as (a), except for the Abalone data set. (c) Same as (a), except for the Concrete Compressive
Strength data set. In this case, because the data points are not distributed along any apparent low-dimensional manifold, the generated maps are
randomly located along the input space and are less useful for data processing for both the symmetric and asymmetric neighborhood functions.
(d) Time development of the average ordered rate calculated over 100 trials for the Auto MPG and Abalone data sets. For both data sets, the
modified asymmetric function quickly attains a high ordered rate, indicating that the globally ordered map is reliably generated. In each trial,
different initial reference vectors and data presentation order are used. Simulation parameters are N = 45, α = 0.05, σ = 1, and β = 1.5. For
the Auto MPG and Concrete Compressive Strength data sets, tsym = 100 000 and Tflip = 50 000; for the Abalone data set, tsym = 200 000 and
Tflip = 100 000.

specifications. For input data, we select four continuous-
valued attributes (i.e., Ds = 4) from the original data set,
i.e., displacement, horsepower, weight, and acceleration.1 The
second is the Abalone data set, which has relevant data
regarding the physical measurements of abalone. We use seven
continuous-valued attributes for the learning (Ds = 7). The
third data set is the Concrete Compressive Strength data set,
which includes quantity of seven ingredients and the age of
concrete samples (Ds = 8). The data in both the first and
second data sets are roughly distributed along a single curved

1Although the original data set also contains some discrete-valued
attributes, we omit them in the present study.

line (one-dimensional nonlinear manifold) in the input space
[Figs. 13(a) and 13(b)]. In contrast, the data in the third set
are broadly distributed in the stimulus space, and there is no
apparent low-dimensional manifold to be traced [Fig. 13(c)].
As shown in Figs. 13(a) and 13(b), for both the first and second
data sets, the modified asymmetric function successfully
generates globally ordered maps without topological defects,
whereas the symmetric one typically forms folded maps
having kinklike defects. This observation demonstrates that
the asymmetric function can extract information regarding
the low-dimensional manifold of the data distribution more
effectively than the symmetric one. As indicated by the ordered
state in Fig. 13(d), the probability that the asymmetric function
achieves a globally ordered state is significantly larger than that
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FIG. 14. Sine-shaped stimulus distributions can result in unde-
sirable maps, depending on their curvature. (a) Sine-shaped distri-
bution. The amplitude a controls the curvature of the distribution.
(b) Result obtained using the symmetric neighborhood function for
a = 0.4. The generated maps typically have cross-point defects.
The left and right graphs show the projections of the stimulus
space to the (x,z) and (x,y) planes, respectively. (c) Typical result
obtained using the modified asymmetric function for a = 0.4, in
which no topological defects are formed, in contrast to (b). At a
higher curvature (a = 0.6), both the symmetric (d) and modified
asymmetric (e) functions typically generate disordered maps and fail
to trace the nonlinear manifold, because some shortcut paths away
from the true manifold are formed in the map. The parameters are
N = 300, α = 0.05, σ = 5, β = 3, tsym = 30 000, and Tflip = 5000.

of the symmetric one. On the other hand, the third data set lacks
any apparent low-dimensional structure in its distribution. In
this case, as expected, both the asymmetric and symmetric
functions similarly generate maps that are randomly located
along the high-dimensional input space and are less useful for
data processing, as shown in Fig. 11.

For real-world data, our results show that introduction of
asymmetric neighborhood functions can facilitate extraction
of some low-dimensional structures inherent in the data.
However, under the condition that the data are distributed on a
highly curved low-dimensional manifold, the SOM using the
modified asymmetric function fails to extract the correspond-
ing inherent data structure (Fig. 14). Consider the sine-shaped
distributions as shown in Fig. 14(a). The amplitude of the
sine shape a can then control the curvature of the distribution.
When the curvature is low (a = 0.4), the modified asymmetric
function generates ordered maps with a high probability
[8 of 10 trials; Fig. 14(b)]. In contrast, the symmetric function
always fails for the same distribution [Fig. 14(c)]. These results
are almost the same as that in Fig. 12. At a higher curvature
(a = 0.6), all trials with either functions result in undesirable
maps that do not correctly trace the manifold [Figs. 14(d) and
14(e)]. These maps have some shortcut paths outside the true
manifold, for example, the path from (x,z) = (0.05,0.65) to
(0.5,0.5) in Fig. 14(d). Therefore, we conclude that even if the
asymmetric neighborhood function is used, a highly curved
structure inherent in the data tends to hinder the extraction of
information from the data distributed on a low-dimensional
manifold.

To summarize this section, in the case of high-dimensional
stimuli, it is naturally expected that no topological defects

can appear if the condition Ds � 2Du + 1 is satisfied and the
stimuli are uniformly distributed in a certain high-dimensional
region. However, we frequently encounter the situation in
which there are some hidden structures in the stimuli or
the data, which indicates that the stimuli are distributed
along a low-dimensional nonlinear manifold in a large
high-dimensional space. In such cases, topological defects
inevitably appear in the map but can be removed by using
the asymmetric neighborhood function, as in the case Ds = 1
or 2. Consequently, the asymmetric neighborhood function
can be effectively used to avoid topological defects even in
the case of high-dimensional stimuli. On the other hand, when
data are distributed along a highly curved manifold, even the
SOM algorithm using the asymmetric function can generate an
incorrect disordered map in which the map has some shortcut
paths outside the manifold.

IV. CONCLUSION

We have examined whether the asymmetric neighborhood
function can remove topological defects during the learning
process of the SOM algorithm. Although a previous study
by some of the authors provided a detailed investigation for
the simplest case in which the one-dimensional stimuli are
mapped to a chain of units [(Ds,Du) = (1,1)], the effectiveness
of the asymmetric function under other conditions was not
clear. To systematically investigate the effectiveness of the
asymmetric function, we gradually changed the dimensionality
conditions for the stimulus space and the array of units from
low to high values. First, we confirmed that the asymmetric
neighborhood function can reliably remove topological defects
in the map when both the stimulus space and the array
of units are two-dimensional [(Ds,Du) = (2,2)] and when
two-dimensional stimuli are mapped to a one-dimensional
chain of units [(Ds,Du) = (2,1)]. Moreover, the distortion
of maps caused by the asymmetry can be simultaneously
reduced by introducing a modified method in which the
direction and the degree of asymmetry are changed over
time. Second, we examined the case in which the stimulus
distribution is limited to the vicinity of a two-dimensional
curved surface in a three-dimensional stimulus space. Even in
such a case, the asymmetric neighborhood function accelerates
the formation of a correct topographic map by efficiently
removing topological defects. For practical applications of
the SOM algorithm, data are typically distributed along a
particular low-dimensional nonlinear manifold. These results
suggest that the asymmetric function is also effective for
processing high-dimensional data sets. Third, to confirm the
effectiveness of the asymmetric function in practical situations,
we examined three real-world data sets. The results obtained
from the real-world data sets suggest that the introduction of
the asymmetric neighborhood function in the SOM algorithm
is more effective in achieving a correctly ordered map if
there is certain underlying low-dimensional structure in the
data distribution. Finally, we found that if data are distributed
along a highly curved manifold, even the asymmetric function
tends to generate a disordered map that is unsuccessful
in extracting the essential low-dimensional structure from
the data. In information processing, it is often crucial to
extract information regarding a nonlinear low-dimensional
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manifold hidden in the data. It is known that sophisticated
algorithms, such as locally linear embedding, can successfully
solve this problem [17,18]. Our last result indicates that for
the SOM algorithm, introduction of only the asymmetric
neighborhood function is insufficient to robustly extract the
nonlinear structure inherent in the data. A variant of the
SOM was proposed to overcome the high nonlinearity of
the manifold [19]. A combination of such an extended
algorithm and the asymmetric neighborhood function is of
great interest. However, a more complete study of this topic is
beyond the scope of this paper and should be studied elsewhere
in the near future.

In conclusion, the asymmetric neighborhood function is
significant in steadily generating correct topographic maps
under a wide range of conditions. This improvement can
lead to more reliable applications of the SOM algorithm to
complicated, high-dimensional data processing.
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APPENDIX

To calculate the order parameter η ≡ maxl{Sl}∑
l Sl

, we define
the size of the locally ordered region Sl as follows: When
(Ds,Du) = (1,1), the unit of region is an interval between
two neighborhood units i and i + 1. The possible state of a
unit region is increasing (mi < mi+1) or decreasing (mi >

mi+1). A locally ordered region is a series of regions in the
same state. When (Ds,Du) = (2,1), the unit of region is an
interval between two neighborhood units i and i + 1. On
a line connecting the two reference vectors mi and mi+1,
if the closest reference vector of any point on the line is
unit i or i + 1, the region is nondisturbed; otherwise, the
region is disturbed. A locally ordered region is a series
of nondisturbed regions. When (Ds,Du) = (2,2), the unit
of region is a grid formed by the four neighboring units
(i,j ),(i,j + 1),(i + 1,j ), and (i + 1,j + 1). We calculate the
vector products a ≡ (a × d)z and b ≡ (b × d)z, where a ≡
mi+1,j − mi,j , b ≡ mi,j+1 − mi,j , and d ≡ mi+1,j+1 − mi,j .
A unit region has three possible states: (i) a > 0 > b,
(ii) b > 0 > a, or (iii; twisted) a,b > 0 or a,b < 0. A locally
ordered region is a set of connected regions that are in the same
state but are not twisted.
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