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The self-organizing map (SOM) is an unsupervised learning method as
well as a type of nonlinear principal component analysis that forms a
topologically ordered mapping from the high-dimensional data space
to a low-dimensional representation space. It has recently found wide
applications in such areas as visualization, classification, and mining of
various data. However, when the data sets to be processed are very large,
a copious amount of time is often required to train the map, which seems
to restrict the range of putative applications. One of the major culprits for
this slow ordering time is that a kind of topological defect (e.g., a kink
in one dimension or a twist in two dimensions) gets created in the map
during training. Once such a defect appears in the map during training,
the ordered map cannot be obtained until the defect is eliminated, for
which the number of iterations required is typically several times larger
than in the absence of the defect. In order to overcome this weakness,
we propose that an asymmetric neighborhood function be used for the
SOM algorithm. Compared with the commonly used symmetric neigh-
borhood function, we found that an asymmetric neighborhood function
accelerates the ordering process of the SOM algorithm, though this asym-
metry tends to distort the generated ordered map. We demonstrate that
the distortion of the map can be suppressed by improving the asymmetric
neighborhood function SOM algorithm. The number of learning steps
required for perfect ordering in the case of the one-dimensional SOM is
numerically shown to be reduced from O(N®) to O(N?) with an asymmet-
ric neighborhood function, even when the improved algorithm is used to
get the final map without distortion.
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1 Introduction

The self-organizing map (SOM) algorithm was proposed by Kohonen (1982,
2001) as a simplified neural network model having some essential properties
to reproduce topographic representations observed in the brain (Hubel
& Wiesel, 1962, 1974; von der Malsburg, 1973; Takeuchi & Amari, 1979).
The SOM algorithm can be used to construct an ordered mapping from
high-dimensional input data space onto low-dimensional array of units
according to the topological relationships between input data. This implies
that the SOM algorithm is capable of extracting the essential information
from hugely complicated data. From the viewpoint of applied information
processing, the SOM algorithm can be regarded as a generalized, nonlinear
type of principal component analysis and has proven valuable in the fields
of visualization, compression, and mining of various complicated data.
The learning performance becomes an important issue in many of the
applications of the SOM algorithm. It is therefore desirable for real ap-
plications that fast convergence can be achieved to the map in which
the correct topological order is produced. In addition, it is desirable for
the resultant map to have as little distortion as possible to faithfully rep-
resent the structure of data. In this letter, we examine the effect of the
form of the neighborhood function on the performance of the SOM learn-
ing algorithm. An inappropriate choice of neighborhood function may
have a detrimental effect on learning performance. Erwin, Obermayer, and
Schulten (1992) have reported that if the form of the symmetric neighbor-
hood function is not convex, many undesirable metastable states will be
present in the system. At each metastable state, the feature map of the SOM
is ill structured, unlike from the correct map. Since the learning process be-
comes trapped in these metastable states, the system can escape from these
undesirable states only through a sheer number of iterations because of
their local stability. They have closely investigated certain relationships be-
tween the form of the symmetric neighborhood function and the existence
of metastable states and have concluded that no metastable states exist
when a convex neighborhood function is used in one-dimensional SOM.
Hence, it is evident that a suitable selection of neighborhood function will
pay dividends in the performance of the algorithm. However, even if such
a suitable symmetrical neighborhood function is selected, there remains
another important factor that spoils the learning performance. This is the
emergence of a topological defect characterized by a globally conflicting
point between multiple, locally ordered regions. A topological defect in the
feature map appears occasionally during the learning process, especially
when using a neighborhood function that is narrow compared with the
total size of the SOM array. Figure 1A shows an example of the topological
defect in a two-dimensional array of SOM with a uniform, rectangular in-
put data space. The feature map is twisted at the center but topologically
ordered everywhere else. Figure 1B shows an example of the topological
defect in a one-dimensional array of SOM with scalar input data, which we
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Figure 1: (A) Example of a topological defect in a two-dimensional array of
SOM with a uniform rectangular input space. The triangle point indicates the
conflicting point in the feature map. (B) Another example of topological defect in
a one-dimensional array with scalar input data. The triangle points also indicate
the conflicting points. (C) Method of generating an asymmetric neighborhood
function by scaling the distance r;. asymmetrically. The degree of asymmetry
is parameterized by B. The distance of the node on the positive direction with
asymmetric unit vector k is scaled by 1/8. The distance on the negative direction
is scaled by B. Therefore, the asymmetric gaussian function is described by
hg(ric) = ﬁh(fic), where 7;, is the scaled distance of node i from the winner
c. (D) An example of an asymmetric gaussian function in two-dimensional
SOM. (E) The initial reference vectors used in numerical simulations. There is
a single kink point at the center of the array. In addition, the reference vectors
are disturbed with small noise. The dashed line depicts one of the possible
perfect maps, which should be formed from the input data given by the uniform
distribution in [0,1].
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call the kink state in this letter. In this kink state, the feature map is piece-
wise ordered on the scale of the width of neighborhood function, but there
are one or more topological defects over the entire map. Once such a kink
appears in the feature map, the learning process for getting the kink out of
the map requires a large number of steps, which is typically several times
larger than that without a kink (Geszti et al., 1990). This slow convergence
time of learning due to a kink state is a serious problem that needs to be
resolved, especially when large, complicated data are the inputs.

To avoid the trap in the kink state, several conventional and empirical
methods have been used, such as finding a suitable choice of the initial ref-
erence vectors or rearranging the sequence of input vectors. In this letter, we
demonstrate that the asymmetry of the neighborhood function can greatly
improve the learning performance, particularly when a kink state appears
during the learning process. The reason that the asymmetric neighborhood
function is effective in the presence of the kink state is as follows.

In the process of getting a kink out of the feature map, the topologi-
cal defect of the kink must move outside the boundary of the SOM array
and vanish. Therefore, the convergence time of the learning process in the
presence of the kink state is determined by the speed of the motion of
topological defects. In general, the motive process of topological defects de-
pends on the form of the neighborhood function. In the case of a symmetric
gaussian function, which is commonly used in the conventional SOM algo-
rithm, the movement of topological defects can be regarded as a random
walk stochastic process, in which the motion of the defect behaves like a
diffusion process. It is hypothesized that if an asymmetric neighborhood
function is used, the motion of the defect will behave like a drift—a faster,
more coherent process. Motivated by this idea, we investigate the effect of
an asymmetric neighborhood function on the performance of the SOM al-
gorithm, in particular, on the possibility that the asymmetry realizes faster-
order learning than with a conventional symmetric neighborhood function
in the presence of the topological defects.

2 Methods

2.1 One-Dimensional SOM. The SOM constructs a mapping from the
input data space to the array of nodes that we call the feature map. To
each node 7, a parametric reference vector m; is assigned. Through SOM
learning, these reference vectors are rearranged according to the following
iterative procedure. An input vector x(t) is presented at each time step ¢,
and the best matching unit whose reference vector is closest to the given
input vector x(t) is chosen. The distance between the input vector and the
reference vector is here prescribed by the Euclidean distance ||x(t) — m;|| in
the input data space. The best matching unit c, called the winner, is given by

¢ = argmin ||x(f) — my||. (2.1)



Self-Organizing Maps with Asymmetric Neighborhood Function 2519

In other words, the data x(t) in the input data space are mapped on to
the node ¢ associated with the reference vector m; closest to x(f). In SOM
learning, the update rule for reference vectors is given by

Tic

m; (t) + o - h(ric)[x(t) — m;(t)]
ticll = llt; — x|,

2.2)

where «, the learning rate, is some small constant. The function /(r) is called
the neighborhood function, in which 7;. is the distance from the position
1. of the winner node ¢ to the position r; of a node i on the array of units.
A widely used neighborhood function is the gaussian function defined

by

r2
h(ric) = exp (— 2; ) : (2.3)

We expect an ordered mapping after iterating the above procedure a
sufficient number of times.

In this letter, we investigate mainly the one-dimensional SOM, because
its simplicity clarifies the essential dynamical process of SOM learning as a
first step. Note that the reference vector in the case of the one-dimensional
SOM is a scalar value (one-dimensional vector), In the following sections,
we denote the reference vector by m; and the input vector by x.

2.2 Asymmetric Neighborhood Function. The conventional neighbor-
hood function widely used in practical applications is usually symmetric
about the origin, that is, the position of the winner node; the gaussian func-
tion is an example of such a function. We now consider an asymmetric
neighborhood function. We would like a method to transform any given
symmetric neighborhood function to an asymmetric one and also to charac-
terize the degree of asymmetry with a one-parameter variable. In addition,
in order to single out the effect of asymmetry on the learning process, we
require that the overall area of the neighborhood function, [*_h(r)dr, be
preserved under the transformation from a symmetric to an asymmetric
function. Keeping in the mind the above two points, the transformation
of a given symmetric neighborhood function h(r) proceeds as follows (see
Figure 1C). Let us define an asymmetry parameter 8(8 > 1), representing
the degree of asymmetry and the unit vector k indicating the direction of
asymmetry. If a unit i is located on the positive direction with k, then the
component parallel to k of the distance from the winner to the unit is scaled
by 1/8. If a unit 7 is located on the negative direction with k, the parallel
component of the distance is scaled by 8. Hence, the asymmetric function
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hg(r), transformed into its symmetric counterpart /(r), is described by

-1
ho(ri) = Ap hEe) Ag =2 (% +ﬂ>

2
n 2 ifr.
fic: (f;) +||rL|| s lfrzc kZO7 (24)
(Br1)* + IrLI2, if 1 -k < 0

where 7;. is the scaled distance from the winner. r is the projected compo-
nent of r;, and r, are the remaining components perpendicular to k. For
example, in 1D SOM, the positive direction of asymmetry is the increas-
ing direction of the index of the SOM array. In this case, the asymmetric
gaussian function is described by

2
Ap exp(—zﬁr;ﬁ) Jifi>c¢

hp(ric) = :
N A,gexp<—’322;’22“), ifi <c

(2.5)

In the special case of the asymmetry parameter 8 = 1, hg(r) is equal to the
original symmetric function h(r). Figure 1D displays a example of asym-
metric gaussian neighborhood functions in the two-dimensional array of
SOM.

2.3 Topological Order and Distortion of the Feature Map. We define
two measures that characterize the property of the feature map. One is
the topological order 5 for quantifying the order of reference vectors in the
SOM array. In a topologically ordered state of 1D SOM, the units of the
SOM array should be arranged according to the magnitude of its reference
vector m; satisfying the condition

mi—1 < m; <Miy1, OF M1 > M; > M. (2.6)

In a kink state, although a large population of the reference vectors satisfies
the above order condition 2.6, there are topological defects that violate the
order condition 2.6. On the feature map, we consider some domains within
which the reference vectors satisfy the order condition 2.6. The topological
order n can be defined as the ratio of the maximum domain size to the total
number of units N, given by

max; Ny
N

2.7)

=
I

where N, is the size of domain /.
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The other is the distortion yx, which measures the distortion of the fea-
ture map. The distribution of reference vectors obtained by SOM learning
reproduces qualitative features of the probability density of the input vec-
tors. There are several theoretical studies on the qualitative features of the
distribution of the reference vectors depending on the probability density
of input vectors (Ritter & Schulten, 1986; Ritter, 1991; Villmann & Claussen,
2006). However, as demonstrated in the following sections, the asymmetry
of the neighborhood function tends to distort the distribution of reference
vectors, which is quite different from the correct probability density of in-
put vectors. For example, when the probability density of input vectors
is uniform in the range [0, 1], a nonuniform distribution of reference vec-
tors is formed through SOM learning with an asymmetric neighborhood
function. Hence, for measuring the nonuniformity in the distribution of ref-
erence vectors, let us define the distortion x. x is a coefficient of variation
of the size distribution of unit Voronoi tessellation cells and is given by

= ‘/Var(Ai) (28)

E(A)

where A; is the size of Voronoi cell of unit i. To eliminate the boundary
effect of the SOM algorithm, the Voronoi cells on the edges of the array are
excluded from the calculation of the mean and variance of A;. When the
reference vectors are distributed uniformly, the distortion x converges to 0.

2.4 Numerical Simulations. In the numerical simulations, we use the
following parameter values: the total number of units N = 1000, the learning
rate o = 0.05 (constant), and the neighborhood radius ¢ = 50. The asym-
metry parameter § = 1.5 and asymmetric direction k are set to the positive
direction in the array. The aim is to examine the learning performance in the
presence of a kink state; for this purpose, we use the initial condition that
a single kink appears at the center of the array (see Figure 1E). The initial
reference vectors are then given by

m; = 4—“7\; D ye, (29)

where §; is a small noise that is uniform in the range —0.02 to 0.02. The
probability density of input vectors {x} is uniform distribution in [0, 1].
Because the density of input vectors is uniform, it follows that the desirable
feature map is a linear arrangement of SOM nodes; an increasing map is
shown as the dashed line in Figure 1E, and a decreasing one is not shown.
In many numerical simulations, we confirmed the following result holds in
a wide range of model parameters.
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3 Results

In this section, we investigate the ordering process of SOM learning in
the presence of a kink state in both symmetric and asymmetric cases of
the neighborhood function. Here we use gaussian function for the original
symmetric neighborhood function, as shown in equation 2.3.

Figure 2A shows a typical time development of the reference vectors
m;. In both cases, almost all topological defects due to the small noise &;
vanish within the first 1000 steps. However, in the case of the symmetric
neighborhood function, a single kink point remains around the center of
the array even after 10,000 steps. In contrast, in the case of the asymmet-
ric function, this kink moves out of the feature map to the right so that
the reference vectors are ordered within 3000 steps. This fast ordering pro-
cess with an asymmetric neighborhood function can also be confirmed in
Figure 2B, which demonstrates the time dependence of the topological
order 7. In the case of the asymmetric neighborhood function, n rapidly
converges to 1 (completely ordered state) within 3000 steps. For the sym-
metric function, 5 also increases up to 0.5 within 3000 steps, which results
from the elimination of almost all the topological defects made by the initial
small noise. However, the process of eliminating the last single kink takes
a large amount of time (about 18,000 steps). To quantify the performance
of the ordering process, let us define the ordering time as the time at which
n reaches 1 (completely ordered state). Figure 2D shows the ordering time
as a function of the total number of units N for both asymmetric and sym-
metric cases of the neighborhood function. It is found that the ordering
time scales roughly as N®> and N? for symmetric and asymmetric neigh-
borhood functions, respectively. Therefore, the asymmetric neighborhood
function accelerates the learning process in the presence of a kink state,
with performance being improved by about one order. We should remark
that the range o of the neighborhood function in Figure 2D is fixed when
N is changed. With a fixed o, the increase of the units N can improve the

Figure 2: The asymmetric neighborhood function enhances the ordering pro-
cess of SOM, though this asymmetry causes the distortion of the feature map.
(A) A typical time development of the reference vectors m; in cases of symmetric
and asymmetric neighborhood functions. The input vectors are randomly se-
lected from a uniform distribution in [0, 1]. (B) Time dependence of the topolog-
ical order n for symmetric and asymmetric neighborhood functions, estimated
from 10 trials. The standard deviations are denoted by the error bars, which
cannot be seen because they are smaller than the size of the graphed symbol.
(C) Time dependence of the distortion x. (D) Ordering time as a function of the
total number of units N. Each data point is estimated from 12 trials. The fitting
function is described by Const. - NY.
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resolution of the representation in the input space. However, more learning
steps are required for achieving the ordered state. We will also discuss the
case that o is scaled proportional to N in discussion.

However, one problem arises in the feature map obtained through the
learning process with the asymmetric neighborhood function. After 10,000
steps, the distribution of the reference vectors in the feature map develops
an unusual bias (see Figure 2A). In general, the distribution of reference
vectors in the learned feature map should represent the probability den-
sity of input vectors, which is uniform in [0, 1]. In the case of the symmetric
neighborhood function, the magnification law of the one-dimensional SOM
has been studied theoretically (Ritter & Schulten, 1986). By this magnifica-
tion law, the uniform input vectors create a uniformly linear map. However,
this result cannot be applied to the case of the asymmetric neighborhood
function. Furthermore, the nonuniform, distorted feature map is formed by
the drift force of the asymmetric neighborhood function. To measure this
distortion of the feature map, we adopt the distortion x (see equation 2.8),
which is the coefficient of variation of the size distribution of Voronoi cells.
Figure 2C shows the time dependence of the distortion y duringlearning. In
the case of the symmetric neighborhood function, x eventually converges
to almost 0. This result indicates that the feature map obtained with the
symmetric neighborhood function has an almost uniform size distribution
of Voronoi cells, which is the result of the uniform probability density of in-
put vectors. In contrast, in the case of the asymmetric function, x converges
to a finite value (£0).

To solve this distorted feature map problem, we introduce an improved
algorithm for the asymmetric neighborhood function. The improved al-
gorithm includes two novel steps during learning. First, we introduce an
inversion operation on the direction of the asymmetric neighborhood func-
tion. After every time interval T, the direction of the asymmetry is turned in
the opposite direction, as illustrated in Figure 3. Since the distortion in the
feature map is along the direction of the asymmetry of the neighborhood
function, this periodic inversion is expected to average out the distortion
in the feature map, leading to the formation of a feature map without dis-
tortion. We set T = 3000 in the following numerical simulations. It is noted
that the interval T should be set to a larger value than the typical order-
ing time for the asymmetric neighborhood function. The optimal value of
the flip period T will be considered in the discussion. Next, we introduce
an operation that decreases the degree of asymmetry of the neighborhood
function. The degree of asymmetry can be controlled by one parameter,
B. When g = 1, the neighborhood function equals the original symmetric
function. With this operation, g is decreased to 1 with each time step, as
illustrated in Figure 3. In our numerical simulations, we adopt a linear
decreasing function,

ﬁ=1+(ﬂo—1)(1— i ) 3.1)

FTotal
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Figure 3: Illustration of the improved algorithm for asymmetric neighborhood
function.

where troa is the total time step and fy is the initial constant value of the
asymmetry parameter .

Using this improved algorithm for the asymmetric neighborhood func-
tion, the results obtained are summarized in Figure 4. It is observed that
the improved algorithm preserves the faster-order learning (see Figure 4A).
Furthermore, as shown in Figure 4C, the ordering time scales as N2 for the
improved algorithm, which is the same as the original asymmetric neigh-
borhood function. Therefore, the improved algorithm has the ability to
accelerate the learning process. This improved algorithm also suppresses
the distortion of the feature map. As shown in Figure 4B, the distortion
x converges to almost 0, which implies that the feature map without dis-
tortion represents the probability density of input vectors. This result can
also be confirmed by another measure of distortion on the feature map.
Der, Herrmann, and Villmann (1997) proposed an effective visualization
method for the topological defects and distortions on the feature map by
using the spatial spectral density of the deviation from uniform ordered
feature map. When the deviation u; is defined by u; = m; — %(mlv,l + mji1),
the spectral density S(k) is given by

1 2mikn
S(k) = lwell®, i = N ZeXP< N )un. (3.2)

n

When the topological defects or distortions exist on the feature map, the
characteristic peaks in the spectral density appear at the wave number
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corresponding to the typical spatial scale of the structures in the feature
map. When the feature map is formed successfully, the spectral density be-
comes nearly flat and has no peaks. Figure 4D shows the time development
of the spectral density for the cases of the symmetric, the asymmetric, and
the improved asymmetric neighborhood functions. We can see that for the
improved asymmetric neighborhood function, the spectral density rapidly
converges to a flat distribution without peaks, whereas some significant
peaks still remain for the original asymmetric neighborhood function. Al-
though the density finally converges to a flat distribution in the case of the
symmetric neighborhood function, the speed of the convergence is much
slower than that for the improved asymmetric neighborhood function.

In summary, by using the improved algorithm of asymmetric neighbor-
hood function, we confer the full benefit of both the fast-order learning and
the undistorted feature map.

4 Applicability to More General Situations

In this section, we demonstrate that the asymmetric neighborhood function
retains its useful properties in more general situations, such as the one-
dimensional ring SOM (periodic boundary condition on the SOM lattice)
and the two-dimensional SOM. These results suggest that the proposed
method can be widely applied to various types of real data.

4.1 One-Dimensional Ring SOM. Let us consider the case of the ring of
SOM units, which is useful when one-dimensional input data are periodic.
For example, we assume a uniform distribution on the unit circle as input
data, which is then given by

x(t) = {cos O(t), sinO(t)}, 0(t) is uniform in [0, 27) . (4.1)

Figure 4: The improved algorithm utilizing an asymmetric neighborhood func-
tion has the ability not only to expedite the learning process but also to sup-
press the distortion of the feature map. (A) Time dependence of the topological
order 7 (interval T = 3000). After 3000 steps, the SOM array is perfectly ordered
in the case of the improved algorithm for asymmetric neighborhood function,
as in the asymmetric neighborhood function. Therefore, these data points are
overlapping at 7 = 1. Note that the error bars cannot be seen owing to their
smallness, as in Figure 2B. (B) Time dependence of the distortion yx, in the same
situation as A. (C) Ordering time as a function of the total number of units N.
(D) Another measure of the distortion on the feature map. The spectral den-
sity S(k) is the Fourier components of local deformation of the feature map. A
salient peak in the spectral density indicates the existence of the distortion or
topological defect in the feature map.
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For such input data, it is desirable that the position of the SOM units makes
one rotation as 6 varies over one period (see Figure 5A). To start in an
artificial kink-like state, we set the initial reference vectors so that the posi-
tion of the units makes two rotations over one period of 6 [0,27], as shown
in Figure 5B. The model parameters used in these simulations are the same
as in the previous section. Figure 5C shows a typical time development of
the reference vectors. During learning, the system should first destroy the
initial nonoptimal ordered state and rearrange the ordered state by some
intermediate disordered state. We can see from Figure 5C that the asymmet-
ric neighborhood function can achieve faster ordering than the symmetric
one. Hence, one can say that the asymmetry of the neighborhood function
is also effective for quick reformation from the kink-like undesirable state
to the optimal state through the intermediate disordered state.

4.2 Two-Dimensional SOM. Next, we show some results from the two-
dimensional SOM, which is also important in practical applications. We
demonstrate that a similarly fast ordering process can be realized with
an improved asymmetric neighborhood function in two-dimensional SOM
(see Figure 5D). The conventional symmetric neighborhood function has
trouble in correcting the twisted state in the two-dimensional SOM. How-
ever, using the improved asymmetric neighborhood function, the feature
map converges to the completely ordered map in much less time, whereas
for the case of the symmetric neighborhood function, this twisted state can-
not be corrected even in 200,000 steps. This suggests that the asymmetric
neighborhood function is also effective in improving the convergence pro-
cess in higher-dimensional SOMs.

Finally, although the advantage of the asymmetric neighborhood func-
tion is also seen for the above two cases, further study is required to examine
this improvement of convergence time with the asymmetric neighborhood
function.

Figure 5: (A) Ordered state of one-dimensional ring SOM lattice for the given
inputdata, x(t) = {cos 6(t), sin ()}, where 6(t) is randomly generated according
toa uniform distribution in [0, 277). (B) Initial reference vectors intended to create
a kink-like state during the learning process. (C) Comparison of typical ordering
behaviors in the 1D ring SOM between the symmetric and the asymmetric
neighborhood functions. (D) Typical time development of reference vectors in
a two-dimensional array of SOM for the cases of symmetric, asymmetric, and
improved asymmetric neighborhood functions. The input vectors are randomly
selected from a uniform distribution [0, 1] x [0, 1]. Simulation parameters: o« =
0.05,8=1.5,0 =5, N =30 x 30, and T = 2000.
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5 Discussion

In this letter, we discussed the learning process of the self-organized map,
especially in the presence of a kink (1D topological defect). Once a kink
in the feature map appears, the learning process tends to take a very long
time to eliminate this kink in the map and achieve the complete ordered
state. Interestingly, even in the presence of the kink, we found that the
asymmetry of the neighborhood function enables the system to accelerate
the learning process. Compared with the conventional symmetric function
with a constant neighborhood range, the convergence time of the learning
process can be roughly reduced from O(N?) to O(N?) (N is the total number
of units).

The difference in the scaling exponent of the ordering time can be ex-
plained as follows. In order to produce the correct topological order, all
topological defects need to move out of the feature map and vanish, so the
process of movement of the topological detect determines the performance
of the ordering process. Let us define X(f) as the net distance from the
initial position of the topological defect, as a function of the actual steps #
in which the defect moves, where f is the number of times the defect has
actually stepped in t learning steps. Figure 6A shows the mean distance
(X(F)) as a function of the actual steps I the defect has moved, estimated
from 1000 samples (e = 0.05, B = 1.5, 0 =50, and N = 1000). For the case
of a symmetric neighborhood function, the mean distance obeys

(X(F)) oc 212, (5.1)

This result indicates that the movement of the topological defect is well
described by a random walk because of the equal probability of defect

Figure 6: (A) Average distance (X(f)) of the topological defect from the initial
point as a function of the actual steps f in which the defect moved. f is the
number of times the defect hat actually stepped in t steps. Each data point
is estimated from 1000 simulations. (B) Effect of the width of neighborhood
function. Log-log plot of ordering time versus scaled number of units N/o,
with o = 8,16,32,64. The fitting functions are Const. - (N, /o), k=2,3.Each
data point is estimated from 12 simulations. (C) Distribution of ordering times
when the initial reference vectors are generated by a uniform random value
in [0, 1], estimated from 10,000 simulations. The arrow indicates that the mean
ordering time in the case of the single kink initial condition. (D) The optimal
value of the flip period T in the improved asymmetric neighborhood function.
Three typical cases are presented: short (T = 500), around optimal (T = 2500),
and long time (T = 8000).
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moving to the right or to the left. In contrast, for the case of an asymmetric
neighborhood function, the mean distance obeys

(X(}) o, (5.2)

which indicates that the topological defect behaves like a drift motion along
the positive direction of the asymmetric function. This drift motion arises
from the asymmetry of the neighborhood function. Thus, equations 5.1 and
5.2 suggest that to eliminate the defect from the N-unit array, the required
actual step  in which the defect moves is proportional to O(N?) and O(N)
for symmetric and asymmetric neighborhood functions, respectively. For
the topological defect to move, some unit near this defect needs to be a
winner so that the reference vector associated with the defect is updated.
In general, the probability that the unit near the defect becomes a winner
depends on both the form of the distribution of reference vectors of all units
and the probability density of the input vectors. As a first approximation,
however, it is reasonable to estimate that this probability of becoming a
winner is proportional to +; when the input vectors are randomly selected
from a uniform distribution. Therefore, the probability that the defect mo-
tion occurs is of the order O(1/N). In other words, the total steps required to
move the defect out of the feature map are proportional to the system size
O(N). Considering the above points, the convergence time can be estimated
by O(N?) and O(N?) with a constant neighborhood range.

Several conventional ways have been used to avoid the slow convergence
of the learning process in the presence of a kink state, such as choosing a
suitable set of initial reference vectors or rearranging the sequence of input
vectors. Further, it is well known that using a neighborhood function with
a large width is effective in creating an ordered map from a very random
initial condition. This is partially because a kink state is likely to appear with
anarrow neighborhood function. However, the large width tends to average
out the fine, detailed, ordered structures. Therefore, in many cases, the
width of the neighborhood function is initially set to be large, such as half the
width of the array of units, and is gradually decreased to a small final value.
In Figure 6B, we investigate the dependency of ordering time on the width
of the neighborhood function under the existence of a single kink. Figure 6B
shows the ordering time as a function of scaled number of units N, that is,
(N/o)k, where k = 2 for asymmetric neighborhood function and k = 3 for
symmetric one. Thus, the large o reduces the effective number of units N,
independent of the shape of the neighborhood function. In other words, this
means that f the unit size N is fixed, the ordering time is proportional to (1 )*.
What is especially important is that even if the ratio, &, is kept a constant
value, the ordering time with an asymmetric neighborhood function is only
about one-tenth that with a symmetric one. This result implies that the
combined use of the asymmetric neighborhood function and the method



Self-Organizing Maps with Asymmetric Neighborhood Function 2533

Table 1: Summary of the Scaling Exponent of Ordering Time to the Total
Number of Units N for Various Neighborhood Functions.

Symmetric Asymmetric
Gaussian 2.992 + 0.001 1.912 £ 0.004
Tent 2.980 £ 0.001 1.912 £ 0.003
Parabola 2.977 £ 0.0004 1.919 £ 0.003

Notes: Tent function is described by h(r) = [1 — /o]
and parabola function is described by h(r) =[1 —
(r/0)?]4, where [x]; = x if x > 0 and [x] = 0 else-
where. The simulation parameters are the same as in
Figure 2D.

of adjusting the width of the neighborhood function is more effective for
achieving a fast ordering process than using either technique by itself.

Although the gaussian neighborhood function is commonly used in
SOM, some studies show that the shape of the neighborhood function is
important for fast learning. We have examined the performance of the
ordering process with various types of neighborhood functions, and the
results are summarized in Table 1. Table 1 shows that the result found
with the gaussian function quantitatively holds in cases of other types of
neighborhood functions, such as a parabola and tent functions. However,
in the case of a nonconvex neighborhood function, the dynamical prop-
erties of the ordering process drastically change owing to the presence of
many metastable states. Erwin et al. (1992) have proved that in the case of
nonconvex neighborhood functions, there are metastable states in which
the system gets trapped during the learning process. In fact, in the case of
the concave exponential neighborhood function defined in Erwin’s et al.’s
letter, the system is trapped in a metastable state and cannot reach a com-
pletely ordered state. Consequently, to realize the fast ordering process, the
neighborhood function should be convex over most of its support.

In order to investigate the dynamical properties of the topological defect,
we have considered a simple situation that a single topological defect exists
around the center of the feature map as an initial condition. However, when
the initial reference vectors are set randomly, the total number of topological
defects appearing in the feature map is not generally equal to one. Therefore,
we need to consider the statistical distribution of the ordering time, because
the total number of the topological defects and the convergence process
depend generally on the initial conditions. Figure 6C shows the distribution
of the ordering time in 1D SOM, when the initial reference vectors are
randomly selected from the uniform distribution [0, 1]. The arrows indicate
the average ordering time in the case of the single-kink initial condition.
For the asymmetric neighborhood function, the distribution of the ordering
time has a single sharp peak near the value of the average ordering time
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in the case of a single kink initial condition. In contrast, for the symmetric
neighborhood function, the distribution of the ordering time has double
peaks and large variations. By examining the time development of the
topological order 7, it is found that the first higher, sharper peak results
from the fast ordering process in the absence of the kink state. The second
lower, broader peak arises from the slow process in which some kinks
appear during learning. In fact, the average position of this broad peak
(=7500 steps) is around 1.59 x 10* steps, which is close to the ordering
time in the case of the single kink initial condition (1.70 x 10* steps). So
although the fast ordering process is observed in some successful cases
(lucky initial conditions), the averaged behavior of the ordering process
can be qualitatively well described by the results obtained in the case of a
single kink initial state.

Finally, we briefly consider the optimal value of the flip period T in the
improved asymmetric neighborhood function. If T is too short, the system
cannot eliminate the topological defects, because the total number of the
learning steps within the same flip period is too short to move the defects
out of the edge of the array of units. Therefore, the value T is required
to be longer than some critical value for ordering the feature map. On
the other hand, if T is too long, few flips of the direction of asymmetric
function occur, which tends to interfere with the formation of the complete
feature map without distortion. Taking account of the above two extreme
cases, it is expected that an optimal value of the flip period T exists. In
fact, this is confirmed in Figure 6D, which shows the time development
of the distortion yx for several values of the flip period T. As a result of
many simulations, we find that the optimal value of flip period T is about
2500, which is almost equivalent to the typical ordering time of the feature
map.
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