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Although context-dependent spike synchronization among populations
of neurons has been experimentally observed, its functional role remains
controversial. In this modeling study, we demonstrate that in a network
of spiking neurons organized according to spike-timing-dependent plas-
ticity, an increase in the degree of synchrony of a uniform input can
cause transitions between memorized activity patterns in the order pre-
sented during learning. Furthermore, context-dependent transitions from
a single pattern to multiple patterns can be induced under appropriate
learning conditions. These findings suggest one possible functional role
of neuronal synchrony in controlling the flow of information by altering
the dynamics of the network.

1 Introduction

Although synchronous activity associated with behavior and cognition has
been observed in many neuronal systems (Gray, Konig, Engel, & Singer,
1989; Riehle, Griin, Diesmann, & Aertsen, 1997; Fries, Reynolds, Rorie, &
Desimone, 2001), its functional role remains unclear (Engel, Fries, & Singer,
2001; Salinas & Sejnowski, 2001; Shadlen & Movshon, 1999; Ermentrout &
Kleinfeld, 2001). It is reasonable to assume that such generated synchronous
spikes drive certain cortical networks as input signals and thereby affect
their functions (Brody & Hopfield, 2003; Diesmann, Gewaltig, & Aertsen,
1999). Another related phenomenon is spike-timing-dependent plasticity
(STDP) (Bi & Poo, 1998; Zhang, Tao, Holt, Harris, & Poo, 1998; Debanne,
Gahwiler, & Thompson, 1998; Markram, Liibke, Frotscher, & Sakmann,
1997; Song, Miller, & Abbott, 2000; Rubin, Lee, & Sompolinsky, 2001),
which allows cortical networks to learn the causality of experienced events
through the coding of the temporal structures of neuronal activity. Consid-
ering that both phenomena affect the functioning of cortical neurons, it is
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natural to ask what effect synchronous inputs have on a neural network or-
ganized under STDP learning. For this purpose, let us consider the specific
situation in which a model network of spiking neurons, whose synaptic
connections are modified through STDP, receives an activity pattern as an
external stimulus as a result of the experiencing of some external events. In
general, these activity patterns possess some systematic temporal structure
reflecting the causality of these external events (Hebb, 1949; Dan & Poo,
2004; Izhikevich, 2006).

In this study, we demonstrate that a network organized under STDP not
only is capable of memorizing the activity patterns of the external stimulus,
but also exhibits a systematic transition behavior among the memorized pat-
terns in response to uniform external synchronized spikes. First, in section 2,
we describe the structure of the network model and the learning process of
STDP. Next, we investigate the behavior of the network organized under
STDP, for the case of asynchronous (see section 3.1) and transient synchro-
nized spike inputs (see section 3.2). From these results, to understand the
essential mechanism of switching behavior of the network, in section 3.3
we develop a stability analysis of the memorized pattern in a simplified
version of the network model. In section 3.4, we also demonstrate that a
context-dependent switching behavior can be achieved under some appro-
priate learning conditions. Finally, in section 4, we discuss the mechanism
of the synchrony-induced switching behavior of the network from the point
of view of dynamical systems. In relation to recent experimental findings,
we discuss the putative functional rules of neuronal synchrony.

2 Model

Figure 1A presents a schematic illustration of the model network we con-
sider, in which leaky integrate-and-fire neurons are recurrently connected
by excitatory synapses whose coupling strengths are modified according to
the STDP rule (Song et al., 2000; van Rossum, Bi, & Turrigiano, 2000; Cateau
& Fukai, 2003). Thus, if a presynaptic spike and a postsynaptic spike oc-
cur at times fpre and fpost, the peak synaptic conductance g is modified by
the addition of the value of the STDP window function F (fpre — fpost), as
shown in Figure 1B. The synaptic conductance g is restricted to lie within
the range 0 to gL ... To enforce this restriction, if the STDP rule causes g to
take a value outside this range, it is reset to the appropriate limiting value.
In addition, a globally uniform inhibition without modification of learning
is included in an all-to-all manner (see appendix A for a full description of
the simulation).

We employ two types of controllable external inputs. One is a stimulus
input, in which an initial stimulus pattern and a training stimulus pattern
are presented during a trial and a learning session, respectively. For learn-
ing, we use a simple training stimulus pattern, as depicted in Figure 1C.
This pattern is divided into three parts consisting of firing patterns, referred
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Figure 1: (A) Schematic diagram depicting the structure of the network model
with spike-timing-dependent plasticity (STDP). Each leaky integrate-and-fire
neuron receives two external inputs. One is a stimulus input, which is a neuron-
specific current used to set a given firing pattern in the network for the learning
and initial stimulus. The other is an activation input, which projects to all neu-
rons uniformly. For the activation input, there are two modes: asynchronous
and synchronous. Within the network, each neuron is connected reciprocally
by an excitatory synaptic coupling, whose strength is modified according to
the STDP rule. In addition, all-to-all uniformly inhibitory connections are in-
cluded. (B) The STDP window function. (C) The activity pattern presented by
the stimulus input during learning. Each dot represents a spike presented in the
corresponding stimulus input. This whole pattern consists of three basic firing
patterns in the fixed order A,B,C,A,B,C---.

to as A, B, and C, in which each is composed of a particular set of active
neurons. These neurons that are active for a given pattern fire periodically,
and in each pattern, there are certain fixed phase relationships among the
active neurons. During learning, these three patterns are presented as the
stimulus input (see Figure 1A) in the fixed order (A,B,C,A,B,C- - ). This can
be regarded as representing a certain external sequence of events that the
network is to learn—in other words, the causality of certain external events.

The other type of controllable input is an activation input, which projects
to all neurons uniformly. This input is introduced to examine the effect
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of synchrony on the neuronal dynamics. This uniform background input
serves to activate the entire network and allow each neuron to be in a
firing state under suitable conditions. There are two modes of neuronal
activity for the activation input: asynchronous and synchronous modes. In
the asynchronous mode, spike trains are randomly generated by a Poisson
process. During learning, the activation input is always in the asynchronous
mode. In the synchronous mode, some of the neurons fire synchronously,
while the other neurons remain in the asynchronous firing state. The fraction
of neurons firing synchronously represents the degree of synchrony. To
remove the influence of firing-rate modulation, in both modes, the average
firing-rate is set to the same constant value, 25 Hz.

3 Results

3.1 Associative Memory Behavior. The main question of interest in this
study is the following: After the STDP learning process described above has
been completed, what activity pattern does the resultant network exhibit?
To answer this question, we first examine the case in which the activation
input is set in the asynchronous mode, with the level of the total current
such that the neurons are in an active state in response to an appropriate
stimulus input and maintain an active state through recurrent excitatory
synapses organized under the STDP. In the following simulations, we use
the condition that the synaptic weights are fixed after learning. This condi-
tion is reasonable under a situation in which the dynamics of the synaptic
modification is much slower than that of the spiking activity.

For our model under these conditions, Figure 2A illustrates some typ-
ical activity patterns displayed by the network (top), the stimulus input
(middle), and the activation input (bottom) as raster plots. In each case, a
stimulus input that is close to one of the learned patterns is applied for
only a brief initial time interval. Apparently, in the situation considered, the
activity pattern rapidly converges to the closest learned pattern. Without
an input stimulus, this recalled activity pattern is sustained by the exci-
tatory synaptic connections organized through the learning process and
suppresses the other memorized patterns with all-to-all inhibitory connec-
tions. Therefore, if the wrong neurons fire accidentally, the network activity
is corrected and maintained in a robust manner. Such behavior is of the
same type as that typically seen in systems exhibiting associative memory
dynamics, like the Hopfield model (Hopfield, 1982), except that these re-
trieval dynamics contain not only information regarding the firing rate but
also that regarding the temporal structure of each learned pattern in the
present case.

3.2 Synchrony-Induced Switching Behavior. The situation described
above is that in which the system recalls one of the three learned pat-
terns and remains in the corresponding state indefinitely. However, in the
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learning process, the network learned these three patterns not indepen-
dently but in the particular order depicted in Figure 1C. This large-scale
structure can be interpreted as reflecting the causality of some sequence
of external events. Thus, because these transitions themselves are included
in the training pattern, they too are encoded in the synaptic matrix (see
Figure 2B). However, because during the learning process, the individual
patterns A, B, and C are presented many times in succession, while the
transitions between these patterns appear much less often, the network has
much less experience with these transitions. Hence, the network does not
learn these transitions as well as the individual patterns, and therefore the
synaptic coupling corresponding to the transitions among patterns is rela-
tively weak. In fact, we can see clearly that three diagonal blocks of major
synaptic connections, which are formed by the three basic stimulus pat-
terns (A,B,C), enable the network to retrieve each pattern in an associative
manner. In addition, there are three off-diagonal blocks of weak synaptic
connections arising from the less frequent transitions among the stimu-
lus patterns as shown in Figure 1C. Because the synaptic connections for
transitions are relatively weak, under ordinary conditions, each individual
pattern is sufficiently stable that no transition among patterns occurs.

Is there any situation in which these weak synapses arising through
STDP from the pattern transitions presented in the learning process yield a
substantial effect on the dynamics of the network? Interestingly, Figure 2C
demonstrates that a brief period of synchrony in the uniform activation
input can enhance this weak effect embedded in the synaptic matrix and
thereby cause a transition from the one pattern to another. Let us describe the
process depicted in that figure. First, the network exhibits pattern A, which
is stable when the activation input is in the asynchronous mode. Thus, in this

Figure 2: Typical effect of a uniformly synchronized spike input on the network
of spiking neurons organized under the STDP learning rule. (A) Typical activity
patterns (top raster plots) in the case that the activation input is in the asyn-
chronous mode (bottom raster plots). In response to the brief presentation of
the initial firing pattern of the stimulus input (middle raster plots), the network
rapidly converges to the learned pattern that is most similar to this stimulus
input. (B) Gray-scale plot of the normalized strengths of excitatory synapses
between neurons after the STDP learning. (C) Synchrony-induced switching
behavior of the network realized through the STDP learning rule. The situa-
tion here is the same as that depicted in Figure 2A, except that in this case,
the mode in the activation input temporally changes from asynchrony to syn-
chrony for the time interval indicated by the double-arrowed lines. In response
to this brief synchronous activation input, the activity pattern becomes unstable
and, consequently, a transition to the next pattern occurs. (D) The same kind of
synchrony-induced switching behavior also occurs in the case of more general
patterns.
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case, the network exhibits ordinary associative memory. However, when
the activation input is switched for a brief time to the synchronous mode,
a transition from the pattern A to the pattern B occurs. Hence, the retrieval
of a learned sequence in the presented order can be triggered by globally
uniform synchronous inputs. The off-diagonal weak synaptic connections,
as shown in Figure 2B, have no effect on the retrieval dynamics under
ordinary conditions, as demonstrated in Figure 2A. However, the effect
of these weak synapses can be enhanced by synchronous spike inputs, as
shown in Figure 2C.

Note that in the situation studied here, the sets of neurons that are
active in patterns A, B, and C are mutually exclusive. This is a somewhat
severe restriction. However, we have found that the qualitative nature of
these results is the same in the more general case that we allow some of the
individual neurons to be active in more than one of the patterns, as long as
the number of such neurons is not too large. In fact, we can clearly see from
Figure 2D that the same synchrony-induced switching behavior occurs in
this case. The top graph shows a 40 x 40 dot image, in which the gray level
of a dot represents the average firing rate over 200 ms (black underbars). The
condition that a relatively small number of neurons are active in multiple
patterns is biologically reasonable, because the mean firing rate of memory
patterns is usually low in biological systems (a situation referred to as
sparse coding) (Willshaw, Buneman, & Longuet-Higgins, 1969). In addition,
it is important to note that many types of observed synchronous activity
accompanying cognition and behavior (Gray et al., 1989; Riehle et al., 1997;
Fries et al., 2001) are transient, and there have been a number of theoretical
studies aimed at understanding the related neuronal mechanism (Aoyagi,
Takekawa, & Fukai, 2003; Tiesinga & Sejnowski, 2004).

3.3 Stability Analysis of the Retrieval State. Theoretical analysis is
helpful to understand the essential mechanism of synchrony-induced
switching, but a full analytical treatment of a synaptic matrix organized
through STDP is very difficult. For this reason, we instead consider a sim-
plified version of the synaptic matrix, keeping the essential properties of
the original one, as given by

E P P-1
sh=tm o | et | +eo [ e | |.
n=1 pn=1
1 (x=0)

where P is the total number of the stored patterns, and ¢/ represents the state
in the ith neuron in the uth pattern and takes only two values: 1 (firing) and
0 (quiescent). N¥(=< Y, ¢/* >,) is the averaged number of active neurons
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Figure 3: (A) The same synchrony-induced switching behavior can be observed
in a simplified version of synapses matrix described in equation 3.1. (¢ = 0.3)
(B) Using this simplified model, we theoretically obtained the two-parameter
phase diagram, showing the dependence of the stability of the learned pattern
on the synaptic delay A and the relative coupling strength € of the two terms.
The present state, one of the learned patterns, is stable if the point (A, €) is
located below the solid curve (dashed curve) for the case of the asynchronous
(synchronous) mode of the activation input. In the shaded region, the learned
pattern becomes unstable in response to the switching of the mode of the acti-
vation input from asynchrony to synchrony. This leads finally to a transition to
the next pattern. It is thus seen that the transition-inducing effect of the weak
synaptic coupling is enhanced by the synchrony. The parameter values used in
Figure 3A are indicated by the +.
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over all stored patterns. This simplified matrix is constructed by summing
two terms with the relative strength ¢; the first term ensures the stable
retrieval of each learned basic pattern (Hopfield, 1982; Willshaw et al.,
1969; Gerstner & van Hemmen, 1992), and the second term is a small term
(e < 1) whose effect is to cause a transition among learned patterns.

This simplified matrix makes the previous model theoretically tractable,
while providing a reasonable approximation of the original model. In
Figure 3A, the same type of synchrony-induced switching behavior can be
observed in this simplified model. Using this model, we examined the effect
of changing the mode of the activation input on the stability of the current
retrieval patterns (see appendix B). The result is displayed in Figure 3B.
There, the dependence of the stability on the synaptic delay A and the
relative coupling strength € of the two terms is plotted.

In the shaded region, the current retrieval pattern is maintained for asyn-
chronous mode in activation input, whereas the same pattern is unstable for
synchronous mode. In other words, a change in the stability of the retrieval
pattern occurs in response to a synchrony-asynchrony switching in the ac-
tivation input. This stability analysis does not answer what spike pattern
the network exhibits after the synchrony-asynchrony switching. However,
considering the effect of the small off-diagonal term in the synaptic weight
(see Equation 3.1), which tends to cause the transition among the patterns,

Figure 4: (A) Context-dependent switching behavior can be realized by using
the appropriate training pattern. The top and bottom raster plots represent
the activity patterns in the network and the activation input, respectively. The
lengths of the red double-arrowed lines indicate one period of the firing pattern
A, while the red vertical lines indicate the onset times of the switching from
asynchrony to synchrony in the activation input. It is thus seen how the network
can be caused to make a transition from one given pattern to either of the other
two patterns by appropriately controlling the onset time of the synchronous
mode. (B) Timing-selective connections organized under STDP reflecting the
nature of the training data. For pattern A, the neuron that fires at an early phase
has a weak off-diagonal connection for a transition to pattern B, whereas the
neuron that fires at a later phase has a connection for pattern C. The normalized
strengths of excitatory synapses between neurons are plotted with gray scales.
(C) Interpretation of the synchrony-induced switching behavior from the point
of view of dynamical systems. When the network is activated by a uniformly
asynchronous spike input, the system possesses some attractors formed by
the STDP learning rule (left). However, a brief, uniformly synchronous input
activates the paths between attractors, leading to a transition to the next pattern
in the learned order (middle). Furthermore, the system can exhibit context-
dependent switching behavior, in which the subsequently appearing pattern
can be determined by appropriately choosing the position of the orbit at the
onset time of the synchronous pattern, as demonstrated in Figure 4A (right).
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it is likely that the state in the network moves near the next learned pattern.
Consequently, when the activation input becomes asynchronous again, the
network activity converges toward the next learned pattern in an associative
manner. For successful transition among the learned patterns, it is required
that the length of the period of synchronized spike input is appropriate. In
general, the desirable value of this period (100-200 ms in this case) depends
on the model parameters. It is found that too short a period cannot trigger
the transition to the next pattern, so that the network stays on the same
pattern, whereas a period that is too long tends to make the transition
uncontrollable. Hence, an appropriate transient synchrony of the activation
input is able to activate the effect of the weak coupling and consequently
induce a transition from one state to the next in the learned order. In relation
to this mechanism, it has been reported that synchrony causes a similar
destabilization phenomenon in the case of a winner-take-all competition
(Lumer, 2000), and in the case of conventional neural networks, a change
in the uniform external field can cause a transition between memorized
patterns under suitable conditions (Amit, 1988).

3.4 Context-Dependent Switching Behavior. The synchrony-induced
switching mechanism realized in a model with STDP has a greater abil-
ity to cause the network to encode the context-dependent association set
by the training data. Figure 4A demonstrates that the network is able to
make a transition from the pattern A to either pattern B or C, depending on
the onset time of the synchronous mode. When the mode of the activation
input changes from asynchrony to synchrony early in the period of pat-
tern A, a transition from pattern A to pattern B occurs, whereas when this
mode change takes place later in the period, a transition from pattern A to
pattern C occurs.

This context-dependent behavior is due to the nature of the training data,
in which the transition to pattern B (C) occurs during the first (second) half
of a period of firing activity of pattern A. Therefore, the difference in the
temporal structure of pattern A at the time of the transition organizes a
selective synaptic connection among the neurons: the neurons that fire early
in pattern A tend to make excitatory connections to the neurons that fire in
pattern B, while the neurons at a later phase form connections to the neurons
of pattern C (see Figure 4B). Owing to this selective connection organized
under STDP, which patterns (B or C) the network makes a transition to
depends on the onset time of the external synchronized spikes, equivalently,
the corresponding temporal structure of pattern A. In summary, for the
context-dependent switching described to appear, it is necessary that the
activity pattern have a temporal structure that varies in time periodically.
The temporal firing pattern exhibited by the network depends on the onset
time of the synchronous mode. This dependence endows the network with
the ability to make a transition from a single pattern to multiple patterns in
a context-dependent manner through STDP learning.
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4 Conclusion

We have demonstrated that a network organized under STDP is capable
of exhibiting synchrony-induced switching behavior, in which a transition
from one firing state to another occurs in response to brief, uniform syn-
chronous spike inputs. In the case of uniformly random spike inputs, the
firing state converges to the learned pattern that is closest to the exter-
nal cue stimulus. Then a synchrony-asynchrony transition in the activation
input can induce a transition from one pattern to the next in the order
that the learned patterns were presented during training. From the per-
spective of dynamical systems, in the case of the asynchronous mode, the
network possesses certain attractors acquired through STDP learning, as
shown in Figure 4C (left). The weak synaptic connections formed through
the influence of the transitions among training patterns have no effect on
the retrieval dynamics in the asynchronous mode. However, when the net-
work is subject to a uniformly synchronous input, the dynamical properties
of the network change drastically. This brief synchronous input activates
the paths corresponding to the transitions among individual patterns that
were weakly encoded in the synaptic matrix during the learning process,
leading to a transition between patterns in the order in which they were
presented.

This result suggests that synchronous spikes may act as a signal in bio-
logical systems, serving to link learned sequences of actions in response to
some external stimuli (Riehle et al., 1997; Lee, 2003). Furthermore, the net-
work has the ability to carry out more complicated tasks, as demonstrated
in Figure 4A. As shown there, the attractor corresponding to the pattern ap-
pearing after the transition can be switched in a context-dependent manner
by controlling the position of the orbit on the attractor at the time that the
uniform synchronous input is applied (see Figure 4C). Computationally, the
mechanism studied here seems to provide a sophisticated method by which
a neuronal system can carry out a task in a context-dependent manner. It
has been pointed out that although the amount of information encoded
by correlated activity may be small, coherent neuronal activity is observed
during particular cognitive and behavioral tasks (Salinas & Sejnowski, 2001;
Averbeck & Lee, 2004). Our results suggest that one possible functional role
of neuronal synchrony is to control the flow of information by changing the
nature of the dynamical system constituted by a set of neuronal circuits. We
believe that some experimental results can be more clearly reinterpreted
using our results.

Appendix A: Detailed Model

A.1. Dynamics. In the network of spiking neurons we employ (see
Figure 1A), the dynamics of each neuron are described by a leaky
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integrate-and-fire model,

avit) _
=

—(Vi(t) — Viest) + R (IE(t) + I'(t)

+IA4(E) + I75™(1)), (A1)

with 1, = 20 ms, Vet = —65 mV, and R, = 100 MQ. Whenever V;(t)
reaches the threshold voltage, Vi, = —50 mV, a spike is generated, and
Vi(t) is instantaneously reset to the resting potential, Viest. The synaptic
currents due to excitatory and inhibitory connections are given by IF(t) =
Z Y ghalt =t — A)and I'(H) = —¢ Z Y., a(t — ! — A), respectively.
Here each spike- ‘mediated postsynaptic potential is expressed in terms of
the o function, which is given by a(t) = % exp(=}) for t > 0 and a(t) =
elsewhere. Here A is the synaptic delay, and t is a time constant. We set
A =1ms and v =4 ms/2 ms for excitatory/inhibitory. The values t;? n=
1,2, ---) are the spike times of the jth presynaptic neuron. The inhibitory
synaptic weightis gI = 21 nS uniformly, while the excitatory one, g;;, ranges
from 0 to 30 nS (= gL ,), according to the STDP learning (see Figure 1B).
We studied networks consisting of N = 1500 (see Figure 2A) and N = 1600
neurons (see Figure 2C).

The stimulus current is given by I71™(t) = ¢Sim 3" o(t — t(stimy), Where
the quantities tl’éshm n=12,---) are the tlmes at which the ith neuron

receives a spike from the stimulus input The uniform current from the

activation input is given by I4(t) = & Y, Y-, alt — tacy) Where £,
(n =1,2,---) are the spike times of the kth spike train in the activation input.
The parameter values g™ = 1000 nS and gt/ Nt = 5.1 nS are used. The
total number of spike trains in the activation input is 1400. In asynchronous
mode, each spike train from the activation input is generated by a Pois-
son process with frequency 25 Hz. In the synchronous mode, some of the
neurons fire synchronously, while the other neurons remain in the asyn-
chronous firing state. The fraction of neurons firing synchronously repre-
sents the degree of synchrony (the ratio of synchronized neurons p = 0.6). In
addition, these “synchronized” neurons are not completely synchronized,
but exhibit some fluctuation in time, which is generated by a gaussian dis-
tribution with 0 = 3 ms. In the case of the simplified model (see Figure 3A),
we use the same values for the model parameters, except that we use ratio
p = 0.3 for the degree of synchrony, g£_ = 4.5 S for the synaptic weight
of excitatory, and r = 4 ms for the synaptic time constant of both excitatory
and inhibitory neurons.

A.2. STDP Learning. For each pair of pre- and postsynaptic
spikes, the corresponding synaptic conductance is modified by g —
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8 + F(tpre — tpost)- The STDP window function F (fyre — fpost) is then given
by

A exp(=121) (At <0)

A.
—A_exp(F21) (At >0) (8.2

F(tpre - tpost) =

where 7 is the time constant of the exponential decay, which determines the
effective time range of the STDP window function. The synaptic weights
are updated by the STDP update rule every time a postsynaptic neuron
receives a spike. When the axonal synaptic delay A is taken into account,
the effective time difference to be used in the update rule is modified to
be At =tye + A — tpost. To avoid unlimited synaptic growth, the ratio of
the negative and positive area of the STDP window function, A_/ A, must
be a sightly larger than 1 (we set A_/A; =1.05) (Song et al., 2000). In
addition, the synaptic conductance is restricted to the range 0 to gt . We
also examine a multiplicative type of STDP rule (Gutig, Aharonov, Rotter,
& Sompolinsky, 2003), which is given by

A1 w)* exp(Z121) (At <0)

Ftre_tos =
(Fpre = fpost) — A_wh exp(=121) (Af > 0)

, (A.3)

where w = —£— is the normalized synaptic weight and w is a parameter con-

trolling the wmgight dependency of synaptic growth. When p = 0, this STDP
rule equals the additive type of STDP rule in equation A.2. In the case of
u =0.05, 0.2, and 1.0, the obtained synaptic weight matrices are very sim-
ilar to the synaptic matrix in Figure 2B. We confirmed that the synchrony-
induced switching behavior can also be observed in these synaptic matrices
(data not shown).

In STDP learning, a stimulus input is used to present some training stim-
ulus patterns. The training stimulus pattern consists of three patterns (A, B,
C in Figure 1C), in which the neurons belonging to a pattern fire with a pe-
riod of 200 ms, keeping certain phase relationships among the firing times
of these neurons. In the preliminary learning process, each stimulus pattern
is presented for 1200 ms in the fixed order shown in Figure 1C. This order
can be regarded as reflecting the causality of experienced external events.
It is expected that after this procedure, the network is able to maintain each
learned pattern without persistent stimulus input, but further learning is
required to facilitate transitions between the learned patterns. For this pur-
pose, in the main learning process, each stimulus pattern is presented for
200 ms in the fixed order A,B,C,A,B,C,A - --. Between the presentations of
each stimulus pattern, there is a quiescent interval period. The duration of
each quiescent interval is selected randomly from [100 ms, 300 ms]. The
use of various interval times is necessary to ensure that the transition is not
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associated specifically with a particular interval time, because it is desirable
for the network to have the property that the transition can occur at any
time within some suitable interval. Typically, this main learning process is
repeated several times. In the case depicted in Figure 4A, the learning pro-
cess is the same, except that the period of each quiescent interval between
two stimulus patterns depends on the next pattern (80 ms for A — B, 180 ms
for A — C), and the stimulus presentation orderis A,B,A,C,A,B,A,C - - -. This
ensures that the transition property depends on the specific timing of the pe-
riod in activation pattern A. During learning, the activation input is always
set in the asynchronous mode.

A.3. DotImage Plotting of the Firing Pattern of Neurons. InFigures2D
and 3A, describing the numerical simulations, the active firing pattern of
the network is a dot image in which neurons are arranged on grid points,
and the gray level of the dots indicates the average firing rate over 200 ms
(see Figure 2D) and 100 ms (see Figure 3A), normalized with respect to the
maximum firing rate.

Appendix B: Stability Analysis in the Retrieval State

We derived the stability condition for the retrieval state in the simplified
model with nonoverlapping learned patterns. In particular, we examine the
difference of the stability in the two situations that the mode of the activation
input is asynchronous and synchronous. Using the rescaled membrane
potential v(t) = V() — Viest, the dynamics of each neuron can be rewritten

by

dui(t)

T = —vi(t) + Rum (IF(t) + I'(t) + I2°(t)) . (B.1)

In the limit of the number of the spike train NA% — oo, the synaptic
current produced by the activation input can be simplified,

Act
4% (asynchronous)
Act

IAct(t) — )] - )g + pgAct Z t + nTAct) (B.2)

(n :integer) (synchronous)

where T4 is the period of the synchronized spike in the activation input. In
this analysis, the degree of synchrony is controlled by changing the ratio of
the synchronized neurons p (0 < p < 1). In other words, p NAct spike trains
are completely synchronized with no jitter, and (1 — p) Nt spike trains
are generated randomly with Poisson process. The synaptic currents of the
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recurrent connections IE(t), I'(t) are given by

N N
FO=33 ghat—a—t),  I')=—g'} > alt—a—t),
j n jon

1
1_ 8
g=% (B.3)

E P P—1
85 _ 8max o Z {iu;];; 1 e® Z ;iﬂ+1§]{t ’
n=1 n=1

NP
M@=H gig, (B4)

where NP(=< 3", ¢/ >,) is the averaged number of active neurons over
all stored patterns. To evaluate these currents, we have to determine the
spike time t for the active neurons. From typical results of our numerical
simulation for the asynchronous mode, these active neurons tend to fire
in a certain period T with independently random phases. In contrast, in
the synchronous mode, the neurons tend to fire with a fixed delay 6 to
the incoming synchronized spikes. Assuming the above conditions, we
can simplify the currents [F(t) and I'(t) in the limit of N*, N — co. On
substituting these equations into equation B.1, we obtain

E _ I
dv(t) —vi(t) + Ry (W + T2 (asynchronous)

UG T ] o) + R((8En — ) Y, alt — A — TAY (4 0))
+IA(t))  (synchronous)

(B.5)

where T and 6 are unknown parameters to be solved later. In order to
determine these unknown parameters, by integrating equation B.5 over a
spike period of the active neurons, we can derive a self-consistent equation,

Act T c E S | T
thmlog g / At+(gmax gg)/v —
&8/ Tact + (hax — g1) /T — Moot
Vin — Vrest_L_ . 1= p)tm(1 — eTAct/Tm)gACt ,
Rm " TAc’r
+ (max — 8K (—A) + pg*“Kr, (6 Tact)  (synchronous)

(B.6)

) (asynchronous)
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T
Kr(s)=e T/m / 8/ Za(u +s+nT)du. (B.7)
0 n

If the self-consistent values of T and 6 are within physically meaningful
ranges, we can determine a solution of equation B.6 for active neurons.

In addition to the above analysis for the active neurons, one more nec-
essary condition for inactive neurons is required: the inactive neuron must
not fire when synaptic current is received from the active neurons. In fact,
we numerically found that irregular firing in the inactive neuron could per-
turb the current retrieval state and cause instability. Therefore, we need to
check that the membrane potential of the inactive neurons stays below the
threshold voltage of the neuronal spike. Among the inactive neurons, the
neurons that should fire in the next learned pattern have a higher mem-
brane potential, owing to the excitatory connections from the current active
neurons, that is, the second term in equation B.4. From this consideration,
it is sufficient that we check only the membrane potential of these neurons,
which is described by

—; w Act )
dvi(t) vi(h) + Rm < T +I2(t))  (asynchronous)

Tm dt - —Vi (t) + Rm ((egr]i\ax - g;) Zn Ol(t —A - TACt(n + 9))
+I4(t))  (synchronous)
(B.8)
To evaluate the maximum of the membrane potential, it is useful to derive a

return map of v;(t), which is calculated by integrating over one spike period
of the active neurons. The convergent value of the return map is given by

vOO( t/)
E _ I Act
R E8max ~ 8¢ + g8 (asynchronous)
9 T /T A act E 1 Act
1 — p)(1 — elac/m)ghAc € — ¢
(1 —pX )87 | (€8max — 8c) Ko (= 0)Ta — &) + 5 Ky (0Tact) -
R Thct Tm - Tm
m 1_¢ Tac/m
(synchronous)

(B.9)

where t’ takes from 0 to 1. Finally, the condition for the membrane potential
of the inactive neuron is given by

Vin > Viest + max v®°(t). (B.10)
tel0,1)

The result of Figure 3B is obtained by calculating equations B.6 and B.10.
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